1PN3 image
Entry Detail
PDB ID:
1PN3
Title:
Crystal Structure of TDP-epi-Vancosaminyltransferase GtfA in complexes with TDP and the acceptor substrate DVV.
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2003-06-12
Release Date:
2003-08-12
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.24
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 32 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:GLYCOSYLTRANSFERASE GTFA
Chain IDs:A, B
Chain Length:404
Number of Molecules:2
Biological Source:AMYCOLATOPSIS ORIENTALIS
Polymer Type:polypeptide(L)
Description:DESVANCOSAMINYL VANCOMYCIN
Chain IDs:C, D
Chain Length:7
Number of Molecules:2
Biological Source:AMYCOLATOPSIS ORIENTALIS
Peptide-like Molecules
PRD_000205
Primary Citation
Structure of the Tdp-Epi-Vancosaminyltransferase Gtfa from the Chloroeremomycin Biosynthetic Pathway.
Proc.Natl.Acad.Sci.USA 100 9238 ? (2003)
PMID: 12874381 DOI: 10.1073/PNAS.1233577100

Abstact

During the biosynthesis of the vancomycin-class antibiotic chloroeremomycin, TDP-epi-vancosaminyltransferase GtfA catalyzes the attachment of 4-epi-vancosamine from a TDP donor to the beta-OHTyr-6 of the aglycone cosubstrate. Glycosyltransferases from this pathway are potential tools for the combinatorial design of new antibiotics that are effective against vancomycin-resistant bacterial strains. These enzymes are members of the GT-B glycosyltransferase superfamily, which share a homologous bidomain topology. We present the 2.8-A crystal structures of GtfA complexes with vancomycin and the natural monoglycosylated peptide substrate, representing the first direct observation of acceptor substrate binding among closely related glycosyltransferases. The acceptor substrates bind to the N-terminal domain such that the aglycone substrate's reactive hydroxyl group hydrogen bonds to the side chains of Ser-10 and Asp-13, thus identifying these as residues of potential catalytic importance. As well as an open form of the enzyme, the crystal structures have revealed a closed form in which a TDP ligand is bound at a donor substrate site in the interdomain cleft, thereby illustrating not only binding interactions, but the conformational changes in the enzyme that accompany substrate binding.

Legend

Protein

Chemical

Disease

Primary Citation of related structures