1ADL image
Entry Detail
PDB ID:
1ADL
Title:
ADIPOCYTE LIPID BINDING PROTEIN COMPLEXED WITH ARACHIDONIC ACID: X-RAY CRYSTALLOGRAPHIC AND TITRATION CALORIMETRY STUDIES
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
1994-03-25
Release Date:
1994-12-20
Method Details:
Experimental Method:
Resolution:
1.60 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
C 1 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ADIPOCYTE LIPID-BINDING PROTEIN
Chain IDs:A
Chain Length:131
Number of Molecules:1
Biological Source:Mus musculus
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
CSD A CYS modified residue
MHO A MET modified residue
Primary Citation
Adipocyte lipid-binding protein complexed with arachidonic acid. Titration calorimetry and X-ray crystallographic studies.
J.Biol.Chem. 269 25339 25347 (1994)
PMID: 7929228

Abstact

The association of the adipocyte lipid-binding protein (ALBP) with arachidonic acid (all cis, 20:4 delta 5,8,11,14) and oleic acid (cis, 18:1 delta 9) has been examined by titration calorimentry. In addition, the crystal structure of ALBP with bound arachidonic acid has also been obtained. Crystallographic analysis of the arachidonic acid.ALBP complex along with the previously reported oleic acid-ALBP structure (Xu, Z., Bernlohr, D. A., and Banaszak, L. J. (1993) J. Biol. Chem. 268, 7874-7884) provides a framework for the molecular examination of protein-lipid association. Isothermal titration calorimetry revealed high affinity association of both unsaturated fatty acids with the protein. The calorimetric data yielded the following thermodynamic parameters for arachidonic acid: Kd = 4.4 microM, n = 0.8, delta G = -7370 cal/mol, delta H = -6770 cal/mol, and T delta S = +600 cal/mol. For oleic acid, the thermodynamic parameters were Kd = 2.4 microM, n = 0.9, delta G = -7770 cal/mol, delta H = -6050 cal/mol, and T delta S = +1720 cal/mol. The identification of thermodynamically dominating enthalpic factors for both fatty acids are consistent with the crystallographic studies demonstrating the interaction of the fatty acid carboxylate with a combination of Arg106, Arg126, and Tyr128. The crystallographic refinement of the protein-arachidonate complex was carried out to 1.6 A with the resultant R factor of 0.19. Within the cavity of the crystalline binding protein, the arachidonate was found in a hairpin conformation. The conformation of the bound ligand is consistent with acceptable torsional angles and the four cis double bonds in arachidonate. These results demonstrate that arachidonate is a ligand for ALBP. They provide thermodynamic and structural data concerning the physical basis for protein-lipid interaction and suggest that intracellular lipid-binding proteins may mediate the biological effects of polyunsaturated fatty acids in vivo.

Legend

Protein

Chemical

Disease

Primary Citation of related structures