9g1x image
Deposition Date 2024-07-10
Release Date 2025-06-18
Last Version Date 2025-06-18
Entry Detail
PDB ID:
9G1X
Keywords:
Title:
Yeast RNA polymerase I elongation complex stalled by an apurinic site, 11-subunit
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
3.50 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase I subunit RPA190
Gene (Uniprot):RPA190
Chain IDs:A
Chain Length:1664
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase I subunit RPA135
Gene (Uniprot):RPA135
Chain IDs:B
Chain Length:1203
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I and III subunit RPAC1
Gene (Uniprot):RPC40
Chain IDs:C
Chain Length:335
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase I subunit RPA14
Gene (Uniprot):RPA14
Chain IDs:D
Chain Length:137
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC1
Gene (Uniprot):RPB5
Chain IDs:E
Chain Length:215
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC2
Gene (Uniprot):RPO26
Chain IDs:F
Chain Length:155
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase I subunit RPA43
Gene (Uniprot):RPA43
Chain IDs:G
Chain Length:326
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC3
Gene (Uniprot):RPB8
Chain IDs:H
Chain Length:146
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC5
Gene (Uniprot):RPB10
Chain IDs:I (auth: J)
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I and III subunit RPAC2
Gene (Uniprot):RPC19
Chain IDs:J (auth: K)
Chain Length:142
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC4
Gene (Uniprot):RPC10
Chain IDs:K (auth: L)
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polyribonucleotide
Molecule:RNA
Chain IDs:L (auth: R)
Chain Length:12
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polydeoxyribonucleotide
Molecule:Non-template DNA
Chain IDs:M (auth: S)
Chain Length:38
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Polymer Type:polydeoxyribonucleotide
Molecule:Template DNA
Chain IDs:N (auth: T)
Chain Length:38
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae
Ligand Molecules
Primary Citation
Cryo-EM uncovers a sequential mechanism for RNA polymerase I pausing and stalling at abasic DNA lesions.
Nat Commun 16 5254 5254 (2025)
PMID: 40480971 DOI: 10.1038/s41467-025-60536-4

Abstact

During synthesis of the ribosomal RNA precursor, RNA polymerase I (Pol I) monitors DNA integrity but its response to DNA damage remains poorly studied. Abasic sites are among the most prevalent DNA lesions in eukaryotic cells, and their detection is critical for cell survival. We report cryo-EM structures of Pol I in different stages of stalling at abasic sites, supported by in vitro transcription studies. Slow nucleotide addition opposite abasic sites occurs through base sandwiching between the RNA 3'-end and the Pol I bridge helix. Templating abasic sites can also cause Pol I cleft opening, which enables the A12 subunit to access the active center. Nucleotide addition opposite the lesion induces a translocation intermediate where DNA bases tilt to form hydrogen bonds with the new RNA base. These findings reveal unique mechanisms of Pol I stalling at abasic sites, differing from arrest by bulky lesions or abasic site handling by RNA polymerase II.

Legend

Protein

Chemical

Disease

Primary Citation of related structures