9OAM image
Deposition Date 2025-04-21
Release Date 2025-10-08
Last Version Date 2025-10-08
Entry Detail
PDB ID:
9OAM
Keywords:
Title:
Room temperature structure of carbonic anhydrase II in complex with vorinostat (co-crystal)
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.40 Å
R-Value Free:
0.17
R-Value Work:
0.15
R-Value Observed:
0.15
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Carbonic anhydrase 2
Gene (Uniprot):CA2
Chain IDs:A
Chain Length:260
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Off-target binding of the histone deacetylase inhibitor vorinostat to carbonic anhydrase II and IX.
Acta Crystallogr.,Sect.F 81 388 397 (2025)
PMID: 40856436 DOI: 10.1107/S2053230X25007447

Abstact

Histone deacetylase inhibitors (HDACi) are widely used in cancer therapy but often suffer from off-target effects due to their pan-inhibitory activity towards zinc-dependent enzymes. Vorinostat (SAHA), a hydroxamate-based HDACi, has been shown to lack isoform selectivity, potentially leading to unintended interactions with other metalloenzymes. Here, we report high-resolution crystal structures of SAHA bound to human carbonic anhydrase II (CA II) and a carbonic anhydrase IX (CA IX) active-site mimic. Structures determined at room temperature and 100 K revealed two distinct SAHA conformers in both CA II and the CA IX mimic, with the hydroxamate moiety displacing the zinc-bound water and adopting either a tetrahedral or pentahedral coordination to Zn2+. Differences in hydrophobic interactions were observed between CA II and the CA IX mimic due to the F131V amino-acid difference between the two enzymes. SwissDock modeling accurately predicted the SAHA binding orientations observed in crystallography. Thermal shift assays using nanoDSF showed minimal stabilization of either CA by SAHA, in contrast to the potent CA inhibitor acetazolamide. Binding-energy calculations suggest that SAHA may bind carbonic anhydrases with affinities comparable to its HDAC targets. These findings highlight potential off-target binding of SAHA to carbonic anhydrases, which may contribute to its clinical side effects. The results also suggest that hydroxamates may serve as a nonsulfonamide scaffold for novel CA inhibitors, although isoform selectivity remains a challenge.

Legend

Protein

Chemical

Disease

Primary Citation of related structures