9N5B image
Deposition Date 2025-02-04
Release Date 2025-08-13
Last Version Date 2025-08-13
Entry Detail
PDB ID:
9N5B
Keywords:
Title:
RNA polymerase II elongation complex containing 8-oxoG at +1 site, apo form
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
3.10 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB1
Gene (Uniprot):RPO21
Chain IDs:D (auth: A)
Chain Length:1733
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB2
Gene (Uniprot):RPB2
Chain IDs:E (auth: B)
Chain Length:1224
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB3
Gene (Uniprot):RPB3
Chain IDs:F (auth: C)
Chain Length:318
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC1
Gene (Uniprot):RPB5
Chain IDs:G (auth: E)
Chain Length:215
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC2
Gene (Uniprot):RPO26
Chain IDs:H (auth: F)
Chain Length:155
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC3
Gene (Uniprot):RPB8
Chain IDs:I (auth: H)
Chain Length:146
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB9
Gene (Uniprot):RPB9
Chain IDs:J (auth: I)
Chain Length:122
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC5
Gene (Uniprot):RPB10
Chain IDs:K (auth: J)
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase II subunit RPB11
Gene (Uniprot):RPB11
Chain IDs:L (auth: K)
Chain Length:120
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerases I, II, and III subunit RPABC4
Gene (Uniprot):RPC10
Chain IDs:M (auth: L)
Chain Length:70
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae S288C
Polymer Type:polydeoxyribonucleotide
Molecule:Non-template strand DNA
Chain IDs:C (auth: N)
Chain Length:18
Number of Molecules:1
Biological Source:synthetic construct
Polymer Type:polyribonucleotide
Molecule:RNA
Chain IDs:A (auth: R)
Chain Length:9
Number of Molecules:1
Biological Source:synthetic construct
Polymer Type:polydeoxyribonucleotide
Molecule:Template strand DNA
Chain IDs:B (auth: T)
Chain Length:29
Number of Molecules:1
Biological Source:synthetic construct
Primary Citation
Transcription-Coupled Template Reconfiguration of 8-Oxoguanine for Error-Prone Transcription Revealed by Time-Resolved X-ray Crystallography and Molecular Dynamics.
J.Am.Chem.Soc. 147 16396 16403 (2025)
PMID: 40305462 DOI: 10.1021/jacs.5c02687

Abstact

Oxidative DNA damage, particularly 8-oxoguanine (8OG), is a significant contributor to transcriptional errors that can alter the cellular phenotype and cell fate. While previous studies proposed that 8OG can use its anti-conformation or syn-conformation to form distinct base pairs with different substrates, it is not clear what conformation 8OG adopts during the template loading step and how different substrates induce transcription-coupled conformational changes of the 8OG template within the active site. Through a combined approach of time-resolved X-ray crystallography and molecular dynamics (MD) simulations, our study provides a comprehensive insight into these important questions. We found that the 8OG template behaves very differently for error-free and error-prone transcription. For error-free CTP incorporation, 8OG remains in anti-conformation during template loading, nucleotide binding, and incorporation steps. As for error-prone ATP incorporation, using time-resolved crystallography, we observed that the 8OG template initially adopts anti-conformation during template loading and the initial nucleotide binding step. However, it transitions to the syn-conformation to form a base pair with incoming ATP over the course of the reaction. Eventually, we observed a post-chemistry state where 8OG adopts the syn-conformation, base-paired with newly incorporated AMP. MD simulations further revealed that the 8OG template switches from an anti- to a syn-conformation by partially backtracking and subsequently reloading into the +1 site. These findings significantly contribute to our understanding of how RNA polymerase II navigates 8OG lesions during transcription, shedding light on transcription fidelity control and the lesion bypass of oxidative DNA damage.

Legend

Protein

Chemical

Disease

Primary Citation of related structures