9JPI image
Entry Detail
PDB ID:
9JPI
Keywords:
Title:
The complex structure of DHAD with aspterric acid (AA).
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2024-09-26
Release Date:
2024-12-04
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.21
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 42 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Dihydroxy-acid dehydratase, chloroplastic
Mutations:K559A,K560A
Chain IDs:A
Chain Length:580
Number of Molecules:1
Biological Source:Arabidopsis thaliana
Primary Citation
Structural Bases of Dihydroxy Acid Dehydratase Inhibition and Biodesign for Self-Resistance.
Biodes Res 6 0046 0046 (2024)
PMID: 39494391 DOI: 10.34133/bdr.0046

Abstact

Dihydroxy acid dehydratase (DHAD) is the third enzyme in the plant branched-chain amino acid biosynthetic pathway and the target for commercial herbicide development. We have previously reported the discovery of fungal natural product aspterric acid (AA) as a submicromolar inhibitor of DHAD through self-resistance gene directed genome mining. Here, we reveal the mechanism of AA inhibition on DHAD and the self-resistance mechanism of AstD, which is encoded by the self-resistance gene astD. As a competitive inhibitor, the hydroxycarboxylic acid group of AA mimics the binding of the natural substrate of DHAD, while the hydrophobic moiety of AA occupies the substrate entrance cavity. Compared to DHAD, AstD has a relatively narrow substrate channel to prevent AA from binding. Several mutants of DHAD were generated and assayed to validate the self-resistance mechanism and to confer Arabidopsis thaliana DHAD with AA resistance. These results will lead to the engineering of new type of herbicides targeting DHAD and provide direction for the ecological construction of herbicide-resistant crops.

Legend

Protein

Chemical

Disease

Primary Citation of related structures