9IV5 image
Deposition Date 2024-07-23
Release Date 2025-10-01
Last Version Date 2025-10-01
Entry Detail
PDB ID:
9IV5
Title:
BRD4 in complex with compound7
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.59 Å
R-Value Free:
0.24
R-Value Work:
0.20
R-Value Observed:
0.21
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Bromodomain-containing protein 4
Gene (Uniprot):BRD4
Chain IDs:A
Chain Length:127
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Multi-Water Bridges Enable Design of BET BD1-Selective Inhibitors for Pancreatic Cancer Therapy.
J.Med.Chem. 68 5719 5735 (2025)
PMID: 40011026 DOI: 10.1021/acs.jmedchem.4c03069

Abstact

Rational design of bromodomain (BD)-selective inhibitors could mitigate on-target toxicities associated with pan-BET inhibition but is challenging despite the availability of high-resolution structures. By simultaneously forming water bridges with BD1-specific residues in both the BC ring and the ZA channel, we identified a potent and orally bioavailable BET BD1-selective inhibitor DDO-8958, which exhibited a KD of 5.6 nM for BRD4 BD1 and a 214-fold selectivity for BRD4 BD1 over BD2. The cocrystal structure demonstrated a unique multi-water bridge mechanism involving BD1-specific residues K91- and D145-driven BD1 selectivity. DDO-8958 extensively influenced the oncogene expression and metabolic pathway, including oxidative phosphorylation in MIA PaCa-2. In vivo, DDO-8958 inhibited tumor growth and markedly augmented the therapeutic efficacy of the glycolysis inhibitor 2-DG. These findings illuminate that multi-water bridges enable design of BD1-selective inhibitors and a therapeutic strategy involving combined targeting of BD1-induced epigenetic reprogramming and glycolysis pathways for the management of pancreatic cancer.

Legend

Protein

Chemical

Disease

Primary Citation of related structures