9I6A image
Deposition Date 2025-01-29
Release Date 2025-02-12
Last Version Date 2025-09-17
Entry Detail
PDB ID:
9I6A
Keywords:
Title:
Crystal structure of human Cdc20 bound to synthetic D-box peptide D7
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.92 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Cell division cycle protein 20 homolog
Gene (Uniprot):CDC20
Chain IDs:A
Chain Length:499
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Molecule:ALA-PRO-0JY-GLY
Chain IDs:B
Chain Length:9
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation

Abstact

E3 ubiquitin ligases engage their substrates via 'degrons' - short linear motifs typically located within intrinsically disordered regions of substrates. As these enzymes are large, multi-subunit complexes that generally lack natural small-molecule ligands and are difficult to inhibit via conventional means, alternative strategies are needed to target them in diseases, and peptide-based inhibitors derived from degrons represent a promising approach. Here we explore peptide inhibitors of Cdc20, a substrate-recognition subunit and activator of the E3 ubiquitin ligase the anaphase-promoting complex/cyclosome (APC/C) that is essential in mitosis and consequently of interest as an anti-cancer target. APC/C engages substrates via degrons that include the 'destruction box' (D-box) motif. We used a rational design approach to construct binders containing unnatural amino acids aimed at better filling a hydrophobic pocket that contributes to the D-box binding site on the surface of Cdc20. We confirmed binding by thermal-shift assays and surface plasmon resonance and determined the structures of a number of the Cdc20-peptide complexes. Using a cellular thermal shift assay, we confirmed that the D-box peptides also bind to and stabilise Cdc20 in the cell. We found that the D-box peptides inhibit ubiquitination activity of APC/CCdc20 and are more potent than the small-molecule inhibitor Apcin. Lastly, these peptides function as portable degrons capable of driving the degradation of a fused fluorescent protein. Interestingly, we find that although inhibitory activity of the peptides correlates with Cdc20-binding affinity, degradation efficacy does not, which may be due to the complex nature of APC/C regulation and effects of degron binding of subunit recruitment and conformational changes. Our study lays the groundwork for the further development of these peptides as molecular therapeutics for blocking APC/C as well as potentially for harnessing the APC/C for targeted protein degradation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures