9FPD image
Deposition Date 2024-06-13
Release Date 2024-12-04
Last Version Date 2024-12-25
Entry Detail
PDB ID:
9FPD
Keywords:
Title:
Crystal structure of human TAK1/TAB1 fusion protein in complex with compound S1
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.40 Å
R-Value Free:
0.22
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
I 2 2 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Mitogen-activated protein kinase kinase kinase 7,TGF-beta-activated kinase 1 and MAP3K7-binding protein 1
Gene (Uniprot):MAP3K7, TAB1
Chain IDs:A
Chain Length:316
Number of Molecules:1
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
SEP A SER modified residue
TPO A THR modified residue
Primary Citation

Abstact

Osteoarthritis (OA) is a chronic and degenerative joint disease affecting more than 500 million patients worldwide with no disease-modifying treatment approved to date. Several publications report on the transforming growth factor β-activated kinase 1 (TAK1) as a potential molecular target for OA, with complementary anti-catabolic and anti-inflammatory effects. We report herein on the development of TAK1 inhibitors with physicochemical properties suitable for intra-articular injection, with the aim to achieve high drug concentration at the affected joint, while avoiding severe toxicity associated with systemic inhibition. More specifically, reducing solubility by increasing crystallinity, while maintaining moderate lipophilicity proved to be a good compromise to ensure high and sustained free drug exposures in the joint. Furthermore, structure-based design allowed for an improvement of selectivity versus interleukin-1 receptor-associated kinases 1 and 4 (IRAK1/4). Finally, TAK-756 was discovered as a potent TAK1 inhibitor with good selectivity versus IRAK1/4 as well as excellent intra-articular pharmacokinetic properties.

Legend

Protein

Chemical

Disease

Primary Citation of related structures