9E2W image
Deposition Date 2024-10-23
Release Date 2025-03-26
Last Version Date 2025-03-26
Entry Detail
PDB ID:
9E2W
Keywords:
Title:
Cryo-EM structure of yeast CMG helicase stalled at G4-containing DNA template, state 1
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
3.30 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA replication licensing factor MCM2
Gene (Uniprot):MCM2
Chain IDs:A (auth: 2)
Chain Length:868
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication licensing factor MCM3
Gene (Uniprot):MCM3
Chain IDs:B (auth: 3)
Chain Length:971
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication licensing factor MCM4
Gene (Uniprot):MCM4
Chain IDs:C (auth: 4)
Chain Length:933
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:Minichromosome maintenance protein 5
Gene (Uniprot):MCM5
Chain IDs:D (auth: 5)
Chain Length:775
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication licensing factor MCM6
Gene (Uniprot):MCM6
Chain IDs:E (auth: 6)
Chain Length:1017
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication licensing factor MCM7
Gene (Uniprot):MCM7
Chain IDs:F (auth: 7)
Chain Length:845
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication complex GINS protein PSF1
Gene (Uniprot):PSF1
Chain IDs:G (auth: A)
Chain Length:208
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication complex GINS protein PSF2
Gene (Uniprot):PSF2
Chain IDs:H (auth: B)
Chain Length:213
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication complex GINS protein PSF3
Gene (Uniprot):PSF3
Chain IDs:I (auth: C)
Chain Length:217
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:DNA replication complex GINS protein SLD5
Gene (Uniprot):SLD5
Chain IDs:J (auth: D)
Chain Length:294
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:Cell division control protein 45
Gene (Uniprot):CDC45
Chain IDs:K (auth: E)
Chain Length:650
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polydeoxyribonucleotide
Molecule:Leading strand DNA template
Chain IDs:L (auth: F)
Chain Length:48
Number of Molecules:1
Biological Source:synthetic construct
Polymer Type:polydeoxyribonucleotide
Molecule:Lagging strand DNA template
Chain IDs:M (auth: G)
Chain Length:21
Number of Molecules:1
Biological Source:synthetic construct
Polymer Type:polypeptide(L)
Molecule:Topoisomerase 1-associated factor 1
Gene (Uniprot):TOF1
Chain IDs:N (auth: X)
Chain Length:1238
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Polymer Type:polypeptide(L)
Molecule:Chromosome segregation in meiosis protein 3
Gene (Uniprot):CSM3
Chain IDs:O (auth: Y)
Chain Length:92
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae W303
Primary Citation
G-quadruplex-stalled eukaryotic replisome structure reveals helical inchworm DNA translocation.
Science 387 eadt1978 eadt1978 (2025)
PMID: 40048517 DOI: 10.1126/science.adt1978

Abstact

DNA G-quadruplexes (G4s) are non-B-form DNA secondary structures that threaten genome stability by impeding DNA replication. To elucidate how G4s induce replication fork arrest, we characterized fork collisions with preformed G4s in the parental DNA using reconstituted yeast and human replisomes. We demonstrate that a single G4 in the leading strand template is sufficient to stall replisomes by arresting the CMG helicase. Cryo-electron microscopy structures of stalled yeast and human CMG complexes reveal that the folded G4 is lodged inside the central CMG channel, arresting translocation. The G4 stabilizes the CMG at distinct translocation intermediates, suggesting an unprecedented helical inchworm mechanism for DNA translocation. These findings illuminate the eukaryotic replication fork mechanism under normal and perturbed conditions.

Legend

Protein

Chemical

Disease

Primary Citation of related structures