9DM1 image
Entry Detail
PDB ID:
9DM1
EMDB ID:
Title:
Mycobacterial supercomplex malate:quinone oxidoreductase assembly
Biological Source:
PDB Version:
Deposition Date:
2024-09-11
Release Date:
2024-10-23
Method Details:
Experimental Method:
Resolution:
3.20 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Probable malate:quinone oxidoreductase
Chain IDs:Y (auth: A)
Chain Length:79
Number of Molecules:1
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Superoxide dismutase [Cu-Zn]
Chain IDs:E (auth: D), F (auth: G)
Chain Length:216
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome bc1 complex cytochrome b subunit
Chain IDs:B (auth: E), C (auth: F)
Chain Length:535
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome bc1 complex cytochrome c subunit
Chain IDs:M (auth: O), U (auth: I)
Chain Length:223
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Conserved transmembrane protein
Chain IDs:L (auth: P), S (auth: J)
Chain Length:100
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome aa3 subunit 2
Chain IDs:G (auth: Q), N (auth: K)
Chain Length:312
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome c oxidase subunit 1
Chain IDs:A (auth: R), D (auth: L)
Chain Length:566
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome aa3 subunit 3
Chain IDs:H (auth: S), O (auth: X)
Chain Length:203
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome c oxidase polypeptide 4
Chain IDs:I (auth: T), P (auth: Z)
Chain Length:139
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome c oxidase subunit CtaJ
Chain IDs:J (auth: U), Q (auth: a)
Chain Length:79
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Uncharacterized protein MSMEG_4692/MSMEI_4575
Chain IDs:K (auth: V), R (auth: b)
Chain Length:145
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:Cytochrome bc1 complex Rieske iron-sulfur subunit
Chain IDs:V (auth: Y), X (auth: M)
Chain Length:382
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Polymer Type:polypeptide(L)
Description:LpqE protein
Chain IDs:T (auth: c), W
Chain Length:159
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis MC2 155
Primary Citation
Cryo-EM of native membranes reveals an intimate connection between the Krebs cycle and aerobic respiration in mycobacteria.
Proc.Natl.Acad.Sci.USA 122 e2423761122 e2423761122 (2025)
PMID: 39969994 DOI: 10.1073/pnas.2423761122

Abstact

To investigate the structure of the mycobacterial oxidative phosphorylation machinery, we prepared inverted membrane vesicles from Mycobacterium smegmatis, enriched for vesicles containing complexes of interest, and imaged the vesicles with electron cryomicroscopy. We show that this analysis allows determination of the structure of both mycobacterial ATP synthase and the supercomplex of respiratory complexes III and IV in their native membrane. The latter structure reveals that the enzyme malate:quinone oxidoreductase (Mqo) physically associates with the respiratory supercomplex, an interaction that is lost on extraction of the proteins from the lipid bilayer. Mqo catalyzes an essential reaction in the Krebs cycle, and in vivo survival of mycobacterial pathogens is compromised when its activity is absent. We show with high-speed spectroscopy that the Mqo:supercomplex interaction enables rapid electron transfer from malate to the supercomplex. Further, the respiratory supercomplex is necessary for malate-driven, but not NADH-driven, electron transport chain activity and oxygen consumption. Together, these findings indicate a connection between the Krebs cycle and aerobic respiration that directs electrons along a single branch of the mycobacterial electron transport chain.

Legend

Protein

Chemical

Disease

Primary Citation of related structures