9C0E image
Deposition Date 2024-05-25
Release Date 2025-02-12
Last Version Date 2025-05-14
Entry Detail
PDB ID:
9C0E
Title:
Phosphorylated human NKCC1_K289NA492E in complex with furosemide
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.70 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Solute carrier family 12 member 2
Gene (Uniprot):SLC12A2
Mutations:K289N, A492E
Chain IDs:A, B
Chain Length:1212
Number of Molecules:2
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
TPO A THR modified residue
Primary Citation
Structural basis for human NKCC1 inhibition by loop diuretic drugs.
Embo J. 44 1540 1562 (2025)
PMID: 39875725 DOI: 10.1038/s44318-025-00368-6

Abstact

Na+-K+-Cl- cotransporters functions as an anion importers, regulating trans-epithelial chloride secretion, cell volume, and renal salt reabsorption. Loop diuretics, including furosemide, bumetanide, and torsemide, antagonize both NKCC1 and NKCC2, and are first-line medicines for the treatment of edema and hypertension. NKCC1 activation by the molecular crowding sensing WNK kinases is critical if cells are to combat shrinkage during hypertonic stress; however, how phosphorylation accelerates NKCC1 ion transport remains unclear. Here, we present co-structures of phospho-activated NKCC1 bound with furosemide, bumetanide, or torsemide showing that furosemide and bumetanide utilize a carboxyl group to coordinate and co-occlude a K+, whereas torsemide encroaches and expels the K+ from the site. We also found that an amino-terminal segment of NKCC1, once phosphorylated, interacts with the carboxyl-terminal domain, and together, they engage with intracellular ion exit and appear to be poised to facilitate rapid ion translocation. Together, these findings enhance our understanding of NKCC-mediated epithelial ion transport and the molecular mechanisms of its inhibition by loop diuretics.

Legend

Protein

Chemical

Disease

Primary Citation of related structures