Abstact
Although several diazotases have been recently reported, the details of the reaction mechanism are not yet understood. In this study, we investigated the mechanism of CmaA6, an ATP-dependent diazotase, which catalyzes the diazotization of 3-aminocoumaric acid using nitrous acid. X-ray crystallography and cryogenic electron microscopy-single particle analysis revealed CmaA6 structures in the substrate-free and AMP-binding states. Kinetic analysis suggested that CmaA6 catalyzes diazotization via a sequential reaction mechanism in which three substrates (nitrous acid, ATP, and 3-aminocoumaric acid) are simultaneously bound in the reaction pocket. The nitrous acid and 3-aminocoumaric acid binding sites were predicted based on the AMP-binding state and confirmed by site-directed mutagenesis. In addition, computational analysis revealed a tunnel for 3-aminocoumaric acid to enter the reaction pocket, which was advantageous for the sequential reaction mechanism. This study provides important insights into the catalytic mechanism of diazotization in natural product biosynthesis.