8Z6J image
Entry Detail
PDB ID:
8Z6J
Keywords:
Title:
SFX structure of CraCRY 133 ms after photoexcitation of the oxidized protein
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2024-04-19
Release Date:
2025-05-14
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.21
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Cryptochrome photoreceptor
Chain IDs:A
Chain Length:509
Number of Molecules:1
Biological Source:Chlamydomonas reinhardtii
Primary Citation

Abstact

Animal-like cryptochromes are photoreceptors that control circadian rhythm and signaling in many eukaryotes. Transient photoreduction of the cryptochrome flavin chromophore initiated signaling via a poorly understood mechanism. By serial femtosecond crystallography (SFX), we show that the photoreduction mechanism of Chlamydomonas reinhardtii cryptochrome involves three loci [carboxyl-terminal region, a transient protonation pathway, and flavin adenine dinucleotide (FAD)-binding site] acting in unison to accomplish three effects: radical pair stabilization, protonation of FAD radical, and formation of the signaling state. Using 19 time-resolved SFX snapshots between 10 nanoseconds and 233 milliseconds, we found that light-driven FAD•-/tyrosyl-373 radical pair (RP) formation primes α22 unfolding. Electron transfer-dependent protonation of aspartate-321 by tyrosine-373 is the epicenter of unfolding by disrupting salt bridges between α22 and the photolyase homology region. Before helix unfolding, another pathway opens transiently for FAD•- protonation and RP stabilization. This link between RP formation and conformational changes provides a structural basis for signaling by animal-like cryptochromes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures