8XZV image
Entry Detail
PDB ID:
8XZV
EMDB ID:
Keywords:
Title:
Architecture of the spinach plastid-encoded RNA polymerase
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2024-01-21
Release Date:
2024-12-04
Method Details:
Experimental Method:
Resolution:
3.16 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit alpha
Chain IDs:A, N (auth: O)
Chain Length:335
Number of Molecules:2
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit beta
Chain IDs:B
Chain Length:1070
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit beta'
Chain IDs:C
Chain Length:677
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit beta''
Chain IDs:D
Chain Length:1357
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Fructokinase-like 1, chloroplastic
Chain IDs:E
Chain Length:472
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Thioredoxin-like protein CITRX, chloroplastic
Chain IDs:F, Q (auth: R)
Chain Length:181
Number of Molecules:2
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Protein PLASTID TRANSCRIPTIONALLY ACTIVE 12
Chain IDs:G
Chain Length:518
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:pTAC3
Chain IDs:H
Chain Length:892
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Protein PLASTID TRANSCRIPTIONALLY ACTIVE 14 isoform X2
Chain IDs:I
Chain Length:490
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:MurE
Chain IDs:S (auth: J)
Chain Length:774
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:pTAC6
Chain IDs:J (auth: K)
Chain Length:324
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:superoxide dismutase
Chain IDs:K (auth: L)
Chain Length:284
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:superoxide dismutase
Chain IDs:L (auth: M)
Chain Length:273
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Protein PLASTID TRANSCRIPTIONALLY ACTIVE 10
Chain IDs:M (auth: N)
Chain Length:678
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Protein PLASTID TRANSCRIPTIONALLY ACTIVE 7
Chain IDs:O (auth: P)
Chain Length:170
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:pTAC18
Chain IDs:P (auth: Q)
Chain Length:143
Number of Molecules:1
Biological Source:Spinacia oleracea
Polymer Type:polypeptide(L)
Description:Fructokinase-like 2, chloroplastic isoform X2
Chain IDs:R (auth: S)
Chain Length:583
Number of Molecules:1
Biological Source:Spinacia oleracea
Ligand Molecules
Primary Citation
Architecture of the spinach plastid-encoded RNA polymerase.
Nat Commun 15 9838 9838 (2024)
PMID: 39537621 DOI: 10.1038/s41467-024-54266-2

Abstact

The plastid-encoded RNA polymerase serves as the principal transcription machinery within chloroplasts, transcribing over 80% of all primary plastid transcripts. This polymerase consists of a prokaryotic-like core enzyme known as the plastid-encoded RNA polymerase core, and is supplemented by newly evolved associated proteins known as PAPs. However, the architecture of the plastid-encoded RNA polymerase and the possible functions of PAPs remain unknown. Here, we present the cryo-electron microscopy structure of a 19-subunit plastid-encoded RNA polymerase complex derived from spinach (Spinacia oleracea). The structure shows that the plastid-encoded RNA polymerase core resembles bacterial RNA polymerase. Twelve PAPs and two additional proteins (FLN2 and pTAC18) bind at the periphery of the plastid-encoded RNA polymerase core, forming extensive interactions that may facilitate complex assembly and stability. PAPs may also protect the complex against oxidative damage and has potential functions in transcriptional regulation. This research offers a structural basis for future investigations into the functions and regulatory mechanisms governing the transcription of plastid genes.

Legend

Protein

Chemical

Disease

Primary Citation of related structures