8W4G image
Entry Detail
PDB ID:
8W4G
Keywords:
Title:
Crystal structure of EndoSz mutant D234M, from Streptococcus equi subsp. Zooepidemicus Sz105
Biological Source:
PDB Version:
Deposition Date:
2023-08-24
Release Date:
2024-07-03
Method Details:
Experimental Method:
Resolution:
2.15 Å
R-Value Free:
0.25
R-Value Work:
0.21
R-Value Observed:
0.21
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:glycoside hydrolase
Mutations:D234M
Chain IDs:A
Chain Length:992
Number of Molecules:1
Biological Source:Streptococcus equi subsp. zooepidemicus Sz105
Ligand Molecules
Primary Citation
Structure-Based High-Efficiency Homogeneous Antibody Platform by Endoglycosidase Sz Provides Insights into Its Transglycosylation Mechanism.
Jacs Au 4 2130 2150 (2024)
PMID: 38938812 DOI: 10.1021/jacsau.4c00004

Abstact

Monoclonal antibodies (mAbs) have gradually dominated the drug markets for various diseases. Improvement of the therapeutic activities of mAbs has become a critical issue in the pharmaceutical industry. A novel endo-β-N-acetylglucosaminidase, EndoSz, from Streptococcus equisubsp. zooepidemicus Sz105 is discovered and applied to enhance the activities of mAbs. Our studies demonstrate that the mutant EndoSz-D234M possesses an excellent transglycosylation activity to generate diverse glycoconjugates on mAbs. We prove that EndoSz-D234M can be applied to various marketed therapeutic antibodies and those in development for antibody remodeling. The remodeled homogeneous antibodies (mAb-G2S2) produced by EndoSz-D234M increase the relative ADCC activities by 3-26-fold. We further report the high-resolution crystal structures of EndoSz-D234M in the apo-form at 2.15 Å and the complex form with a bound G2S2-oxazoline intermediate at 2.25 Å. A novel pH-jump method was utilized to obtain the complex structure with a high resolution. The detailed interactions of EndoSz-D234M and the carried G2S2-oxazoline are hence delineated. The oxazoline sits in a hole, named the oxa-hole, which stabilizes the G2S2-oxazoline in transit and catalyzes the further transglycosylation reaction while targeting Asn-GlcNAc (+1) of Fc. In the oxa-hole, the H-bonding network involved with oxazoline dominates the transglycosylation activity. A mobile loop2 (a.a. 152-159) of EndoSz-D234M reshapes the binding grooves for the accommodation of G2S2-oxazoline upon binding, at which Trp154 forms a hydrogen bond with Man (-2). The long loop4 (a.a. 236-248) followed by helix3 is capable of dominating the substrate selectivity of EndoSz-D234M. In addition, the stepwise transglycosylation behavior of EndoSz-D234M is elucidated. Based on the high-resolution structures of the apo-form and the bound form with G2S2-oxazoline as well as a systematic mutagenesis study of the relative transglycosylation activity, the transglycosylation mechanism of EndoSz-D234M is revealed.

Legend

Protein

Chemical

Disease

Primary Citation of related structures