8U8R image
Entry Detail
PDB ID:
8U8R
Keywords:
Title:
Y229F/V290N/S292F Streptomyces coelicolor Laccase
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2023-09-18
Release Date:
2023-11-15
Method Details:
Experimental Method:
Resolution:
2.86 Å
R-Value Free:
0.21
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Copper oxidase
Mutations:Y229F, V290N, S292F
Chain IDs:A, B, C
Chain Length:351
Number of Molecules:3
Biological Source:Streptomyces coelicolor
Primary Citation
Increasing Reduction Potentials of Type 1 Copper Center and Catalytic Efficiency of Small Laccase from Streptomyces coelicolor through Secondary Coordination Sphere Mutations.
Angew.Chem.Int.Ed.Engl. 62 e202314019 e202314019 (2023)
PMID: 37926680 DOI: 10.1002/anie.202314019

Abstact

The key to type 1 copper (T1Cu) function lies in the fine tuning of the CuII/I reduction potential (E°'T1Cu) to match those of its redox partners, enabling efficient electron transfer in a wide range of biological systems. While the secondary coordination sphere (SCS) effects have been used to tune E°'T1Cu in azurin over a wide range, these principles are yet to be generalized to other T1Cu-containing proteins to tune catalytic properties. To this end, we have examined the effects of Y229F, V290N and S292F mutations around the T1Cu of small laccase (SLAC) from Streptomyces coelicolor to match the high E°'T1Cu of fungal laccases. Using ultraviolet-visible absorption and electron paramagnetic resonance spectroscopies, together with X-ray crystallography and redox titrations, we have probed the influence of SCS mutations on the T1Cu and corresponding E°'T1Cu . While minimal and small E°'T1Cu increases are observed in Y229F- and S292F-SLAC, the V290N mutant exhibits a major E°'T1Cu increase. Moreover, the influence of these mutations on E°'T1Cu is additive, culminating in a triple mutant Y229F/V290N/S292F-SLAC with the highest E°'T1Cu of 556 mV vs. SHE reported to date. Further activity assays indicate that all mutants retain oxygen reduction reaction activity, and display improved catalytic efficiencies (kcat /KM) relative to WT-SLAC.

Legend

Protein

Chemical

Disease

Primary Citation of related structures