8RNQ image
Entry Detail
PDB ID:
8RNQ
Keywords:
Title:
Unspecific peroxygenase from Marasmius wettsteinii (MweUPO-1) in complex with dodecane
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2024-01-10
Release Date:
2024-10-16
Method Details:
Experimental Method:
Resolution:
1.80 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Unspecific peroxygenase
Chain IDs:A, B
Chain Length:240
Number of Molecules:2
Biological Source:Marasmius wettsteinii
Primary Citation
Structural Insights and Reaction Profile of a New Unspecific Peroxygenase from Marasmius wettsteinii Produced in a Tandem-Yeast Expression System.
Acs Chem.Biol. 19 2240 2253 (2024)
PMID: 39367827 DOI: 10.1021/acschembio.4c00504

Abstact

Fungal unspecific peroxygenases (UPOs) are gaining momentum in synthetic chemistry. Of special interest is the UPO from Marasmius rotula (MroUPO), which shows an exclusive repertoire of oxyfunctionalizations, including the terminal hydroxylation of alkanes, the α-oxidation of fatty acids and the C-C cleavage of corticosteroids. However, the lack of heterologous expression systems to perform directed evolution has impeded its engineering for practical applications. Here, we introduce a close ortholog of MroUPO, a UPO gene from Marasmius wettsteinii (MweUPO-1), that has a similar reaction profile to MroUPO and for which we have set up a directed evolution platform based on tandem-yeast expression. Recombinant MweUPO-1 was produced at high titers in the bioreactor (0.7 g/L) and characterized at the biochemical and atomic levels. The conjunction of soaking crystallographic experiments at a resolution up to 1.6 Å together with the analysis of reaction patterns sheds light on the substrate preferences of this promiscuous biocatalyst.

Legend

Protein

Chemical

Disease

Primary Citation of related structures