8RJ0 image
Entry Detail
PDB ID:
8RJ0
Keywords:
Title:
Crystal structure of mutant aspartase from Bacillus sp. YM55-1 in the closed loop conformation
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2023-12-19
Release Date:
2025-01-15
Method Details:
Experimental Method:
Resolution:
1.90 Å
R-Value Free:
0.20
R-Value Work:
0.16
R-Value Observed:
0.17
Space Group:
P 21 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Aspartate ammonia-lyase
Mutations:T187I, M321I, K324M, N326C, A422S, Y429D
Chain IDs:A, B
Chain Length:468
Number of Molecules:2
Biological Source:Bacillus sp. YM55-1
Primary Citation
Bioinformatics and Computationally Supported Redesign of Aspartase for beta-Alanine Synthesis by Acrylic Acid Hydroamination.
Acs Catalysis 15 928 938 (2025)
PMID: 39839848 DOI: 10.1021/acscatal.4c05525

Abstact

Aspartate ammonia lyases catalyze the reversible amination of fumarate to l-aspartate. Recent studies demonstrate that the thermostable enzyme from Bacillus sp. YM55-1 (AspB) can be engineered for the enantioselective production of substituted β-amino acids. This reaction would be attractive for the conversion of acrylic acid to β-alanine, which is an important building block for the preparation of bioactive compounds. Here we describe a bioinformatics and computational approach aimed at introducing the β-alanine synthesis activity. Three strategies were used: First, we redesigned the α-carboxylate binding pocket of AspB to introduce activity with the acrylic acid. Next, different template enzymes were identified by genome mining, equipped with a redesigned α-carboxylate pocket, and investigated for β-alanine synthesis, which yielded variants with better activity. Third, interactions of the SS-loop that covers the active site and harbors a catalytic serine were computationally redesigned using energy calculations to stabilize reactive conformations and thereby further increase the desired β-alanine synthesis activity. Different improved enzymes were obtained and the best variants showed k cat values with acrylic acid of at least 0.6-1.5 s-1 with K M values in the high mM range. Since the β-alanine production of wild-type enzyme was below the detection limit, this suggests that the k cat/K m was improved by at least 1000-fold. Crystal structures of the 6-fold mutant of redesigned AspB and the similarly engineered aspartase from Caenibacillus caldisaponilyticus revealed that their ligand-free structures have the SS-loop in a closed (reactive) conformation, which for wild-type AspB is only observed in the substrate-bound enzyme. AlphaFold-generated models suggest that other aspartase variants redesigned for acrylic acid hydroamination also prefer a 3D structure with the loop in a closed conformation. The combination of binding pocket redesign, genome mining, and enhanced active-site loop closure thus created effective β-alanine synthesizing variants of aspartase.

Legend

Protein

Chemical

Disease

Primary Citation of related structures