8RIV image
Entry Detail
PDB ID:
8RIV
Keywords:
Title:
T2R-TTL-1-K08 complex
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2023-12-19
Release Date:
2024-03-27
Method Details:
Experimental Method:
Resolution:
2.78 Å
R-Value Free:
0.23
R-Value Work:
0.17
R-Value Observed:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Tubulin alpha-1B chain
Chain IDs:A, C
Chain Length:451
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Description:Tubulin beta-2B chain
Chain IDs:B, D
Chain Length:445
Number of Molecules:2
Biological Source:Bos taurus
Polymer Type:polypeptide(L)
Description:Stathmin-4
Chain IDs:E
Chain Length:143
Number of Molecules:1
Biological Source:Rattus norvegicus
Polymer Type:polypeptide(L)
Description:Tubulin tyrosine ligase
Chain IDs:F
Chain Length:384
Number of Molecules:1
Biological Source:Gallus gallus
Primary Citation

Abstact

Accelerated SuFEx Click Chemistry (ASCC) is a powerful method for coupling aryl and alkyl alcohols with SuFEx-compatible functional groups. With its hallmark favorable kinetics and exceptional product yields, ASCC streamlines the synthetic workflow, simplifies the purification process, and is ideally suited for discovering functional molecules. We showcase the versatility and practicality of the ASCC reaction as a tool for the late-stage derivatization of bioactive molecules and in the array synthesis of sulfonate-linked, high-potency, microtubule targeting agents (MTAs) that exhibit nanomolar anticancer activity against multidrug-resistant cancer cell lines. These findings underscore ASCC's promise as a robust platform for drug discovery.

Legend

Protein

Chemical

Disease

Primary Citation of related structures