8RAS image
Deposition Date 2023-12-01
Release Date 2024-03-06
Last Version Date 2024-03-13
Entry Detail
PDB ID:
8RAS
Keywords:
Title:
Plastid-encoded RNA polymerase transcription elongation complex
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.62 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit alpha
Chain IDs:A, B
Chain Length:327
Number of Molecules:2
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit beta
Chain IDs:C
Chain Length:1072
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit beta'
Gene (Uniprot):rpoC1
Chain IDs:D
Chain Length:680
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:DNA-directed RNA polymerase subunit beta''
Gene (Uniprot):rpoC2
Chain IDs:E
Chain Length:1373
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP1
Chain IDs:F
Chain Length:911
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP2
Chain IDs:G
Chain Length:862
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP3
Chain IDs:H
Chain Length:675
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP4
Chain IDs:I
Chain Length:263
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP5
Chain IDs:J
Chain Length:529
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP6
Chain IDs:K
Chain Length:460
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP7
Chain IDs:L
Chain Length:483
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP8
Chain IDs:M
Chain Length:334
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP9
Chain IDs:N
Chain Length:297
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP10
Chain IDs:O, P
Chain Length:185
Number of Molecules:2
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP11
Chain IDs:Q
Chain Length:768
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PAP12
Chain IDs:R
Chain Length:162
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:FLN2
Chain IDs:S
Chain Length:611
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Molecule:PTAC18
Chain IDs:T
Chain Length:140
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polydeoxyribonucleotide
Molecule:DNA (81-MER)
Chain IDs:U (auth: X)
Chain Length:81
Number of Molecules:1
Biological Source:DNA molecule
Polymer Type:polydeoxyribonucleotide
Molecule:DNA (81-MER)
Chain IDs:V (auth: Y)
Chain Length:81
Number of Molecules:1
Biological Source:DNA molecule
Polymer Type:polyribonucleotide
Molecule:RNA (40-MER)
Chain IDs:W (auth: Z)
Chain Length:40
Number of Molecules:1
Biological Source:synthetic construct
Primary Citation
Structure of the plant plastid-encoded RNA polymerase.
Cell 187 1145 1159.e21 (2024)
PMID: 38428394 DOI: 10.1016/j.cell.2024.01.036

Abstact

Chloroplast genes encoding photosynthesis-associated proteins are predominantly transcribed by the plastid-encoded RNA polymerase (PEP). PEP is a multi-subunit complex composed of plastid-encoded subunits similar to bacterial RNA polymerases (RNAPs) stably bound to a set of nuclear-encoded PEP-associated proteins (PAPs). PAPs are essential to PEP activity and chloroplast biogenesis, but their roles are poorly defined. Here, we present cryoelectron microscopy (cryo-EM) structures of native 21-subunit PEP and a PEP transcription elongation complex from white mustard (Sinapis alba). We identify that PAPs encase the core polymerase, forming extensive interactions that likely promote complex assembly and stability. During elongation, PAPs interact with DNA downstream of the transcription bubble and with the nascent mRNA. The models reveal details of the superoxide dismutase, lysine methyltransferase, thioredoxin, and amino acid ligase enzymes that are subunits of PEP. Collectively, these data provide a foundation for the mechanistic understanding of chloroplast transcription and its role in plant growth and adaptation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures