8QQB image
Deposition Date 2023-10-04
Release Date 2024-10-16
Last Version Date 2025-01-01
Entry Detail
PDB ID:
8QQB
Keywords:
Title:
Crystal structure of protein kinase CK2 catalytic subunit in complex with a Dibromo Dihydro Dibenzofuranone derivative
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.26 Å
R-Value Free:
0.23
R-Value Work:
0.20
R-Value Observed:
0.20
Space Group:
P 43 21 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Casein kinase II subunit alpha
Gene (Uniprot):CSNK2A1
Chain IDs:A, B
Chain Length:349
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Discovery of 7,9-Dibromo-dihydrodibenzofuran as a Potent Casein Kinase 2 (CK2) Inhibitor: Synthesis, Biological Evaluation, and Structural Studies on E- / Z -Isomers.
Acs Pharmacol Transl Sci 7 3846 3866 (2024)
PMID: 39698287 DOI: 10.1021/acsptsci.4c00426

Abstact

The human protein kinase CK2 is a promising target for cancer treatment. Only two CK2 inhibitors have reached clinical trials until today. Among others, a dibenzofuran scaffold has emerged as highly prospective for the development of new CK2 inhibitors. Thirty-three newly synthesized dibenzofuran-based compounds were tested on their inhibitory potential in vitro. 7,9-Dichloro-8-hydroxy-4-[(phenylamino)methylene]-1,2-dihydro-dibenzo[b,d]furan-3(4H)-one (12b) and 7,9-dibromo-8-hydroxy-4-[(phenylamino)methylene]-1,2-dihydro-dibenzo[b,d]furan-3(4H)-one (12c) showed the lowest IC50 values with 5.8 nM for both. The dibenzofuran-based CK2 inhibitors crossed the cell membrane of LNCaP human prostate carcinoma cells and reduced intracellular CK2 activity. Among 70 kinases from different representative subgroups of the human kinome, CK2 was most strongly inhibited by compound 12c. Co-crystallization of 12c together with CK2α indicated a π-halogen bond of the bromine at position C9 with the gatekeeper amino acid Phe113. CK2α could bind both the E- and Z-isomers of 12c. Our results provide new insights into the structure-activity relationships of dibenzofuran derivatives.

Legend

Protein

Chemical

Disease

Primary Citation of related structures