8QMR image
Entry Detail
PDB ID:
8QMR
Keywords:
Title:
Succinic semialdehyde dehydrogenase from E. coli with bound NAD+ and succinic semialdehyde
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2023-09-25
Release Date:
2024-10-02
Method Details:
Experimental Method:
Resolution:
2.30 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Succinate semialdehyde dehydrogenase [NAD(P)+] Sad
Chain IDs:A, B, C, D
Chain Length:462
Number of Molecules:4
Biological Source:Escherichia coli K-12
Primary Citation
Adaptive laboratory evolution recruits the promiscuity of succinate semialdehyde dehydrogenase to repair different metabolic deficiencies.
Nat Commun 15 8898 8898 (2024)
PMID: 39406738 DOI: 10.1038/s41467-024-53156-x

Abstact

Promiscuous enzymes often serve as the starting point for the evolution of novel functions. Yet, the extent to which the promiscuity of an individual enzyme can be harnessed several times independently for different purposes during evolution is poorly reported. Here, we present a case study illustrating how NAD(P)+-dependent succinate semialdehyde dehydrogenase of Escherichia coli (Sad) is independently recruited through various evolutionary mechanisms for distinct metabolic demands, in particular vitamin biosynthesis and central carbon metabolism. Using adaptive laboratory evolution (ALE), we show that Sad can substitute for the roles of erythrose 4-phosphate dehydrogenase in pyridoxal 5'-phosphate (PLP) biosynthesis and glyceraldehyde 3-phosphate dehydrogenase in glycolysis. To recruit Sad for PLP biosynthesis and glycolysis, ALE employs various mechanisms, including active site mutation, copy number amplification, and (de)regulation of gene expression. Our study traces down these different evolutionary trajectories, reports on the surprising active site plasticity of Sad, identifies regulatory links in amino acid metabolism, and highlights the potential of an ordinary enzyme as innovation reservoir for evolution.

Legend

Protein

Chemical

Disease

Primary Citation of related structures