8QMA image
Entry Detail
PDB ID:
8QMA
EMDB ID:
Keywords:
Title:
Structure of the plastid-encoded RNA polymerase complex (PEP) from Sinapis alba
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2023-09-21
Release Date:
2024-03-06
Method Details:
Experimental Method:
Resolution:
3.50 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit beta
Chain IDs:K (auth: A)
Chain Length:1072
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit beta''
Chain IDs:L (auth: B)
Chain Length:1373
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit alpha
Chain IDs:M (auth: C), N (auth: D)
Chain Length:327
Number of Molecules:2
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP1
Chain IDs:O (auth: E)
Chain Length:911
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP3
Chain IDs:P (auth: F)
Chain Length:675
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP4
Chain IDs:A (auth: G)
Chain Length:264
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP5
Chain IDs:B (auth: H)
Chain Length:529
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:FLN2
Chain IDs:Q (auth: I)
Chain Length:611
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP7
Chain IDs:R (auth: J)
Chain Length:483
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP8
Chain IDs:C (auth: K)
Chain Length:334
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP9
Chain IDs:D (auth: L)
Chain Length:297
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP10
Chain IDs:E (auth: M), F (auth: N)
Chain Length:184
Number of Molecules:2
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP11
Chain IDs:G (auth: O)
Chain Length:768
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP12 (DNA-directed RNA polymerase subunit omega)
Chain IDs:H (auth: P)
Chain Length:162
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PTAC18
Chain IDs:I (auth: R)
Chain Length:140
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:PAP6
Chain IDs:J (auth: S)
Chain Length:460
Number of Molecules:1
Biological Source:Sinapis alba
Polymer Type:polypeptide(L)
Description:DNA-directed RNA polymerase subunit beta'
Chain IDs:S (auth: T)
Chain Length:680
Number of Molecules:1
Biological Source:Sinapis alba
Primary Citation
Structure of the multi-subunit chloroplast RNA polymerase.
Mol.Cell 84 910 ? (2024)
PMID: 38428434 DOI: 10.1016/j.molcel.2024.02.003

Abstact

Chloroplasts contain a dedicated genome that encodes subunits of the photosynthesis machinery. Transcription of photosynthesis genes is predominantly carried out by a plastid-encoded RNA polymerase (PEP), a nearly 1 MDa complex composed of core subunits with homology to eubacterial RNA polymerases (RNAPs) and at least 12 additional chloroplast-specific PEP-associated proteins (PAPs). However, the architecture of this complex and the functions of the PAPs remain unknown. Here, we report the cryo-EM structure of a 19-subunit PEP complex from Sinapis alba (white mustard). The structure reveals that the PEP core resembles prokaryotic and nuclear RNAPs but contains chloroplast-specific features that mediate interactions with the PAPs. The PAPs are unrelated to known transcription factors and arrange around the core in a unique fashion. Their structures suggest potential functions during transcription in the chemical environment of chloroplasts. These results reveal structural insights into chloroplast transcription and provide a framework for understanding photosynthesis gene expression.

Legend

Protein

Chemical

Disease

Primary Citation of related structures