8PI9 image
Deposition Date 2023-06-21
Release Date 2024-06-19
Last Version Date 2024-06-19
Entry Detail
PDB ID:
8PI9
Title:
DNA binding domain of HNF-1A bound to P2-HNF4A promoter DNA variant (P2 -181G>A)
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.29
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Hepatocyte nuclear factor 1-alpha
Gene (Uniprot):HNF1A
Chain IDs:C (auth: A), D (auth: B)
Chain Length:198
Number of Molecules:2
Biological Source:Homo sapiens
Polymer Type:polydeoxyribonucleotide
Molecule:Chains: E
Mutations:NM_175914.5 c.-181G>A (g.42984264)
Chain IDs:A (auth: E)
Chain Length:21
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polydeoxyribonucleotide
Molecule:Chains: F
Mutations:NM_175914.5 c.-181G>A (g.42984264)
Chain IDs:B (auth: F)
Chain Length:21
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Molecular mechanism of HNF-1A-mediated HNF4A gene regulation and promoter-driven HNF4A-MODY diabetes.
JCI Insight 9 ? ? (2024)
PMID: 38855865 DOI: 10.1172/jci.insight.175278

Abstact

Monogenic diabetes is a gateway to precision medicine through molecular mechanistic insight. Hepatocyte nuclear factor 1A (HNF-1A) and HNF-4A are transcription factors that engage in crossregulatory gene transcription networks to maintain glucose-stimulated insulin secretion in pancreatic β cells. Variants in the HNF1A and HNF4A genes are associated with maturity-onset diabetes of the young (MODY). Here, we explored 4 variants in the P2-HNF4A promoter region: 3 in the HNF-1A binding site and 1 close to the site, which were identified in 63 individuals from 21 families of different MODY disease registries across Europe. Our goal was to study the disease causality for these variants and to investigate diabetes mechanisms on the molecular level. We solved a crystal structure of HNF-1A bound to the P2-HNF4A promoter and established a set of techniques to probe HNF-1A binding and transcriptional activity toward different promoter variants. We used isothermal titration calorimetry, biolayer interferometry, x-ray crystallography, and transactivation assays, which revealed changes in HNF-1A binding or transcriptional activities for all 4 P2-HNF4A variants. Our results suggest distinct disease mechanisms of the promoter variants, which can be correlated with clinical phenotype, such as age of diagnosis of diabetes, and be important tools for clinical utility in precision medicine.

Legend

Protein

Chemical

Disease

Primary Citation of related structures