8OVD image
Deposition Date 2023-04-25
Release Date 2024-07-17
Last Version Date 2024-07-17
Entry Detail
PDB ID:
8OVD
Title:
Respiratory supercomplex (III2-IV2) from Mycobacterium smegmatis
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.30 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Cytochrome bc1 complex cytochrome c subunit
Gene (Uniprot):MSMEG_4262
Chain IDs:B (auth: M), N (auth: G)
Chain Length:408
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Cytochrome bc1 complex cytochrome b subunit
Gene (Uniprot):MSMEG_4263
Chain IDs:C (auth: N), O (auth: H)
Chain Length:556
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Cytochrome bc1 complex cytochrome c subunit
Gene (Uniprot):MSMEG_4261
Chain IDs:A (auth: O), M (auth: C)
Chain Length:278
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Transmembrane protein
Gene (Uniprot):MSMEG_2575
Chain IDs:D (auth: P), P (auth: I)
Chain Length:100
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:cytochrome-c oxidase
Gene (Uniprot):MSMEG_4268
Chain IDs:H (auth: Q), T (auth: X)
Chain Length:341
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit 1
Gene (Uniprot):D806_022970
Chain IDs:G (auth: R), S (auth: L)
Chain Length:575
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Probable cytochrome c oxidase subunit 3
Gene (Uniprot):MSMEG_4260
Chain IDs:E (auth: S), Q (auth: J)
Chain Length:203
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase polypeptide 4
Gene (Uniprot):MSMEG_4267
Chain IDs:F (auth: T), R (auth: K)
Chain Length:139
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Cytochrome c oxidase subunit
Gene (Uniprot):MSMEG_4693
Chain IDs:I (auth: U), U (auth: Z)
Chain Length:79
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Uncharacterized protein MSMEG_4692/MSMEI_4575
Gene (Uniprot):MSMEG_4692, MSMEI_4575
Chain IDs:J (auth: V), V (auth: a)
Chain Length:157
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:LpqE protein
Gene (Uniprot):MSMEG_6078
Chain IDs:K (auth: W), W (auth: b)
Chain Length:186
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Polymer Type:polypeptide(L)
Molecule:Superoxide dismutase [Cu-Zn]
Gene (Uniprot):sodC
Chain IDs:L (auth: Y), X (auth: c)
Chain Length:278
Number of Molecules:2
Biological Source:Mycolicibacterium smegmatis
Primary Citation
Long-range charge transfer mechanism of the III 2 IV 2 mycobacterial supercomplex.
Nat Commun 15 5276 5276 (2024)
PMID: 38902248 DOI: 10.1038/s41467-024-49628-9

Abstact

Aerobic life is powered by membrane-bound redox enzymes that shuttle electrons to oxygen and transfer protons across a biological membrane. Structural studies suggest that these energy-transducing enzymes operate as higher-order supercomplexes, but their functional role remains poorly understood and highly debated. Here we resolve the functional dynamics of the 0.7 MDa III2IV2 obligate supercomplex from Mycobacterium smegmatis, a close relative of M. tuberculosis, the causative agent of tuberculosis. By combining computational, biochemical, and high-resolution (2.3 Å) cryo-electron microscopy experiments, we show how the mycobacterial supercomplex catalyses long-range charge transport from its menaquinol oxidation site to the binuclear active site for oxygen reduction. Our data reveal proton and electron pathways responsible for the charge transfer reactions, mechanistic principles of the quinone catalysis, and how unique molecular adaptations, water molecules, and lipid interactions enable the proton-coupled electron transfer (PCET) reactions. Our combined findings provide a mechanistic blueprint of mycobacterial supercomplexes and a basis for developing drugs against pathogenic bacteria.

Legend

Protein

Chemical

Disease

Primary Citation of related structures