8J26 image
Entry Detail
PDB ID:
8J26
EMDB ID:
Title:
CryoEM structure of SARS CoV-2 RBD and Aptamer complex
Biological Source:
PDB Version:
Deposition Date:
2023-04-14
Release Date:
2023-06-21
Method Details:
Experimental Method:
Resolution:
3.40 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Fab light chain (REGN10987)
Chain IDs:B (auth: A)
Chain Length:224
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Description:Fab heavy chain (REGN10987)
Chain IDs:C (auth: B)
Chain Length:248
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polypeptide(L)
Description:Spike protein S1
Chain IDs:D (auth: C)
Chain Length:253
Number of Molecules:1
Biological Source:Severe acute respiratory syndrome coronavirus 2
Polymer Type:polydeoxyribonucleotide
Description:AM047-6
Chain IDs:E (auth: D)
Chain Length:48
Number of Molecules:1
Biological Source:synthetic construct
Polymer Type:polydeoxyribonucleotide
Description:AM032-4
Chain IDs:A (auth: E)
Chain Length:44
Number of Molecules:1
Biological Source:synthetic construct
Ligand Molecules
Primary Citation
Structure-Guided Development of Bivalent Aptamers Blocking SARS-CoV-2 Infection.
Molecules 28 ? ? (2023)
PMID: 37375202 DOI: 10.3390/molecules28124645

Abstact

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused devastation to human society through its high virulence, infectivity, and genomic mutations, which reduced the efficacy of vaccines. Here, we report the development of aptamers that effectively interfere with SARS-CoV-2 infection by targeting its spike protein, which plays a pivotal role in host cell entry of the virus through interaction with the viral receptor angiotensin-converting enzyme 2 (ACE2). To develop highly effective aptamers and to understand their mechanism in inhibiting viral infection, we determined the three-dimensional (3D) structures of aptamer/receptor-binding domain (RBD) complexes using cryogenic electron microscopy (cryo-EM). Moreover, we developed bivalent aptamers targeting two distinct regions of the RBD in the spike protein that directly interact with ACE2. One aptamer interferes with the binding of ACE2 by blocking the ACE2-binding site in RBD, and the other aptamer allosterically inhibits ACE2 by binding to a distinct face of RBD. Using the 3D structures of aptamer-RBD complexes, we minimized and optimized these aptamers. By combining the optimized aptamers, we developed a bivalent aptamer that showed a stronger inhibitory effect on virus infection than the component aptamers. This study confirms that the structure-based aptamer-design approach has a high potential in developing antiviral drugs against SARS-CoV-2 and other viruses.

Legend

Protein

Chemical

Disease

Primary Citation of related structures