8IBK image
Entry Detail
PDB ID:
8IBK
Keywords:
Title:
Crystal structure of Bacillus sp. AHU2216 GH13_31 Alpha-glucosidase E256Q/N258G in complex with maltotriose
Biological Source:
Host Organism:
PDB Version:
Deposition Date:
2023-02-10
Release Date:
2023-05-03
Method Details:
Experimental Method:
Resolution:
1.69 Å
R-Value Free:
0.20
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Alpha-glucosidase
Mutations:E256Q,N258G
Chain IDs:A
Chain Length:563
Number of Molecules:1
Biological Source:Bacillus sp. (in: firmicutes)
Ligand Molecules
Primary Citation
Alteration of Substrate Specificity and Transglucosylation Activity of GH13_31 alpha-Glucosidase from Bacillus sp. AHU2216 through Site-Directed Mutagenesis of Asn258 on beta → alpha Loop 5.
Molecules 28 ? ? (2023)
PMID: 37049872 DOI: 10.3390/molecules28073109

Abstact

α-Glucosidase catalyzes the hydrolysis of α-d-glucosides and transglucosylation. Bacillus sp. AHU2216 α-glucosidase (BspAG13_31A), belonging to the glycoside hydrolase family 13 subfamily 31, specifically cleaves α-(1→4)-glucosidic linkages and shows high disaccharide specificity. We showed previously that the maltose moiety of maltotriose (G3) and maltotetraose (G4), covering subsites +1 and +2 of BspAG13_31A, adopts a less stable conformation than the global minimum energy conformation. This unstable d-glucosyl conformation likely arises from steric hindrance by Asn258 on β→α loop 5 of the catalytic (β/α)8-barrel. In this study, Asn258 mutants of BspAG13_31A were enzymatically and structurally analyzed. N258G/P mutations significantly enhanced trisaccharide specificity. The N258P mutation also enhanced the activity toward sucrose and produced erlose from sucrose through transglucosylation. N258G showed a higher specificity to transglucosylation with p-nitrophenyl α-d-glucopyranoside and maltose than the wild type. E256Q/N258G and E258Q/N258P structures in complex with G3 revealed that the maltose moiety of G3 bound at subsites +1 and +2 adopted a relaxed conformation, whereas a less stable conformation was taken in E256Q. This structural difference suggests that stabilizing the G3 conformation enhances trisaccharide specificity. The E256Q/N258G-G3 complex formed an additional hydrogen bond between Met229 and the d-glucose residue of G3 in subsite +2, and this interaction may enhance transglucosylation.

Legend

Protein

Chemical

Disease

Primary Citation of related structures