8I7L image
Deposition Date 2023-02-01
Release Date 2023-02-15
Last Version Date 2024-10-16
Entry Detail
PDB ID:
8I7L
Title:
Crystal structure of indoleamine 2,3-dioxygenagse 1 (IDO1) complexed with a novel inhibitor
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.29
R-Value Work:
0.27
R-Value Observed:
0.27
Space Group:
P 21 21 21
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Indoleamine 2,3-dioxygenase 1
Gene (Uniprot):IDO1
Chain IDs:A, B
Chain Length:403
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Apo-Form Selective Inhibition of IDO for Tumor Immunotherapy.
J Immunol. 209 180 191 (2022)
PMID: 35725271 DOI: 10.4049/jimmunol.2100938

Abstact

The pharmacological inhibition of IDO1 is considered an effective therapeutic approach for cancer treatment. However, the inadequate response of existing holo-IDO1 inhibitors and unclear biomarkers available in clinical practice limit the possibility of developing efficacious IDO1 inhibitors. In the current study, we aimed to elucidate the activity and mechanism of a potent 1H-pyrrole-2-carboxylic acid derivative (B37) targeting apo-IDO1 and to determine its role in tumor therapy. By competing with heme for binding to apo-IDO1, B37 potently inhibited IDO1 activity, with an IC50 of 22 pM assessed using a HeLa cell-based assay. The x-ray cocrystal structure of the inhibitor-enzyme complex showed that the B37-human IDO1 complex has strong hydrophobic interactions, which enhances its binding affinity, determined using isothermal titration calorimetry. Stronger noncovalent interactions, including π stacking and hydrogen bonds formed between B37 and apo-human IDO1, underlay the enthalpy-driven force for B37 for binding to the enzyme. These binding properties endowed B37 with potent antitumor efficacy, which was confirmed in a mouse colon cancer CT26 syngeneic model in BALB/c mice and in an azoxymethane/dextran sulfate sodium-induced colon carcinogenesis model in C57BL/6 mice by activating the host immune system. Moreover, the combination of B37 and anti-PD1 Ab synergistically inhibited tumor growth. These results suggested that B37 may serve as a unique candidate for apo-IDO1 inhibition-mediated tumor immunotherapy.

Legend

Protein

Chemical

Disease

Primary Citation of related structures