8H17 image
Deposition Date 2022-09-30
Release Date 2023-04-26
Last Version Date 2024-05-01
Entry Detail
PDB ID:
8H17
Keywords:
Title:
Crystal structure of the Globin domain of Thermosynechococcus elongatus BP-1
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.15 Å
R-Value Free:
0.22
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 43 21 2
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Tlr1989 protein
Gene (Uniprot):tlr1989
Chain IDs:A
Chain Length:200
Number of Molecules:1
Biological Source:Thermosynechococcus vestitus BP-1
Primary Citation
A novel single sensor hemoglobin domain from the thermophilic cyanobacteria Thermosynechococcus elongatus BP-1 exhibits higher pH but lower thermal stability compared to globins from mesophilic organisms.
Int.J.Biol.Macromol. 240 124471 124471 (2023)
PMID: 37076076 DOI: 10.1016/j.ijbiomac.2023.124471

Abstact

Thermosynechococcus elongatus-BP1 belongs to the class of photoautotrophic cyanobacterial organisms. The presence of chlorophyll a, carotenoids, and phycocyanobilin are the characteristics that categorize T. elongatus as a photosynthetic organism. Here, we report the structural and spectroscopic characteristics of a novel hemoglobin (Hb) Synel Hb from T.elongatus, synonymous with Thermosynechococcus vestitus BP-1. The X-ray crystal structure (2.15 Å) of Synel Hb suggests the presence of a globin domain with a pre-A helix similar to the sensor domain (S) family of Hbs. The rich hydrophobic core accommodates heme in a penta-coordinated state and readily binds an extraneous ligand (imidazole). The absorption and circular dichroic spectral analysis of Synel Hb reiterated that the heme is in FeIII+ state with a predominantly α-helical structure similar to myoglobin. Synel Hb displays higher resistance to structural perturbations induced via external stresses like pH and guanidium hydrochloride, which is comparable to Synechocystis Hb. However, Synel Hb exhibited lower thermal stability compared to mesophilic hemoglobins. Overall, the data is suggestive of the structural sturdiness of Synel Hb, which probably corroborates its origin in extreme thermophilic conditions. The stable globin provides scope for further investigation and may lead to new insights with possibilities for engineering stability in hemoglobin-based oxygen carriers.

Legend

Protein

Chemical

Disease

Primary Citation of related structures