8GK7 image
Deposition Date 2023-03-17
Release Date 2024-04-24
Last Version Date 2025-05-21
Entry Detail
PDB ID:
8GK7
Title:
MsbA bound to cerastecin C
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.32 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Lipid A export ATP-binding/permease protein MsbA
Gene (Uniprot):msbA
Chain IDs:A, B
Chain Length:598
Number of Molecules:2
Biological Source:Acinetobacter baumannii
Primary Citation

Abstact

Carbapenem-resistant Acinetobacter baumannii infections have limited treatment options. Synthesis, transport and placement of lipopolysaccharide or lipooligosaccharide (LOS) in the outer membrane of Gram-negative bacteria are important for bacterial virulence and survival. Here we describe the cerastecins, inhibitors of the A. baumannii transporter MsbA, an LOS flippase. These molecules are potent and bactericidal against A. baumannii, including clinical carbapenem-resistant Acinetobacter baumannii isolates. Using cryo-electron microscopy and biochemical analysis, we show that the cerastecins adopt a serpentine configuration in the central vault of the MsbA dimer, stalling the enzyme and uncoupling ATP hydrolysis from substrate flipping. A derivative with optimized potency and pharmacokinetic properties showed efficacy in murine models of bloodstream or pulmonary A. baumannii infection. While resistance development is inevitable, targeting a clinically unexploited mechanism avoids existing antibiotic resistance mechanisms. Although clinical validation of LOS transport remains undetermined, the cerastecins may open a path to narrow-spectrum treatment modalities for important nosocomial infections.

Legend

Protein

Chemical

Disease

Primary Citation of related structures