8FW1 image
Deposition Date 2023-01-20
Release Date 2023-06-28
Last Version Date 2023-10-25
Entry Detail
PDB ID:
8FW1
Keywords:
Title:
Gluconobacter Ene-Reductase (GluER) mutant - PagER
Biological Source:
Source Organism:
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.50 Å
R-Value Free:
0.27
R-Value Work:
0.26
R-Value Observed:
0.27
Space Group:
P 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:N-ethylmaleimide reductase
Chain IDs:A, B, C
Chain Length:362
Number of Molecules:3
Biological Source:Gluconobacter oxydans
Ligand Molecules
Primary Citation
Regioselective Radical Alkylation of Arenes Using Evolved Photoenzymes.
J.Am.Chem.Soc. 145 11866 11874 (2023)
PMID: 37199445 DOI: 10.1021/jacs.3c03607

Abstact

Substituted arenes are ubiquitous in molecules with medicinal functions, making their synthesis a critical consideration when designing synthetic routes. Regioselective C-H functionalization reactions are attractive for preparing alkylated arenes; however, the selectivity of existing methods is modest and primarily governed by the substrate's electronic properties. Here, we demonstrate a biocatalyst-controlled method for the regioselective alkylation of electron-rich and electron-deficient heteroarenes. Starting from an unselective "ene"-reductase (ERED) (GluER-T36A), we evolved a variant that selectively alkylates the C4 position of indole, an elusive position using prior technologies. Mechanistic studies across the evolutionary series indicate that changes to the protein active site alter the electronic character of the charge transfer (CT) complex responsible for radical formation. This resulted in a variant with a significant degree of ground-state CT in the CT complex. Mechanistic studies on a C2-selective ERED suggest that the evolution of GluER-T36A helps disfavor a competing mechanistic pathway. Additional protein engineering campaigns were carried out for a C8-selective quinoline alkylation. This study highlights the opportunity to use enzymes for regioselective radical reactions, where small molecule catalysts struggle to alter selectivity.

Legend

Protein

Chemical

Disease

Primary Citation of related structures