8EZ1 image
Deposition Date 2022-10-30
Release Date 2023-02-22
Last Version Date 2024-10-23
Entry Detail
PDB ID:
8EZ1
Keywords:
Title:
Human Ornithine Aminotransferase (hOAT) co-crystallized with its inactivator 3-Amino-4-fluorocyclopentenecarboxylic Acid
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.91 Å
R-Value Free:
0.23
R-Value Work:
0.18
R-Value Observed:
0.19
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Ornithine aminotransferase, mitochondrial
Gene (Uniprot):OAT
Chain IDs:A, B, C
Chain Length:404
Number of Molecules:3
Biological Source:Homo sapiens
Primary Citation
Structural and Mechanistic Basis for the Inactivation of Human Ornithine Aminotransferase by (3 S ,4 S )-3-Amino-4-fluorocyclopentenecarboxylic Acid.
Molecules 28 ? ? (2023)
PMID: 36770800 DOI: 10.3390/molecules28031133

Abstact

Ornithine aminotransferase (OAT) is overexpressed in hepatocellular carcinoma (HCC), and we previously showed that inactivation of OAT inhibits the growth of HCC. Recently, we found that (3S,4S)-3-amino-4-fluorocyclopentenecarboxylic acid (5) was a potent inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), proceeding by an enamine mechanism. Here we describe our investigations into the activity and mechanism of 5 as an inactivator of human OAT. We have found that 5 exhibits 10-fold less inactivation efficiency (kinact/KI) against hOAT than GABA-AT. A comprehensive mechanistic study was carried out to understand its inactivation mechanism with hOAT. pKa and electrostatic potential calculations were performed to further support the notion that the α,β-unsaturated alkene of 5 is critical for enhancing acidity and nucleophilicity of the corresponding intermediates and ultimately responsible for the improved inactivation efficiency of 5 over the corresponding saturated analogue (4). Intact protein mass spectrometry and the crystal structure complex with hOAT provide evidence to conclude that 5 mainly inactivates hOAT through noncovalent interactions, and that, unlike with GABA-AT, covalent binding with hOAT is a minor component of the total inhibition which is unique relative to other monofluoro-substituted derivatives. Furthermore, based on the results of transient-state measurements and free energy calculations, it is suggested that the α,β-unsaturated carboxylate group of PLP-bound 5 may be directly involved in the inactivation cascade by forming an enolate intermediate. Overall, compound 5 exhibits unusual structural conversions which are catalyzed by specific residues within hOAT, ultimately leading to an enamine mechanism-based inactivation of hOAT through noncovalent interactions and covalent modification.

Legend

Protein

Chemical

Disease

Primary Citation of related structures