8EQW image
Entry Detail
PDB ID:
8EQW
Title:
Crystal structure of Fub7
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2022-10-10
Release Date:
2023-10-11
Method Details:
Experimental Method:
Resolution:
1.76 Å
R-Value Free:
0.22
R-Value Work:
0.19
R-Value Observed:
0.19
Space Group:
P 1 21 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Sulfhydrylase FUB7
Chain IDs:A, B, C, D, E, F, G, H
Chain Length:450
Number of Molecules:8
Biological Source:Fusarium fujikuroi
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
LLP A LYS modified residue
Primary Citation
Molecular and Structural Basis for C gamma-C Bond Formation by PLP-Dependent Enzyme Fub7.
Angew.Chem.Int.Ed.Engl. 63 e202317161 e202317161 (2024)
PMID: 38308582 DOI: 10.1002/anie.202317161

Abstact

Pyridoxal 5'-phosphate (PLP)-dependent enzymes that catalyze γ-replacement reactions are prevalent, yet their utilization of carbon nucleophile substrates is rare. The recent discovery of two PLP-dependent enzymes, CndF and Fub7, has unveiled unique C-C bond forming capabilities, enabling the biocatalytic synthesis of alkyl- substituted pipecolic acids from O-acetyl-L-homoserine and β-keto acid or aldehyde derived enolates. This breakthrough presents fresh avenues for the biosynthesis of pipecolic acid derivatives. However, the catalytic mechanisms of these enzymes remain elusive, and a dearth of structural information hampers their extensive application. Here, we have broadened the catalytic scope of Fub7 by employing ketone-derived enolates as carbon nucleophiles, revealing Fub7's capacity for substrate-dependent regioselective α-alkylation of unsymmetrical ketones. Through an integrated approach combining X-ray crystallography, spectroscopy, mutagenesis, and computational docking studies, we offer a detailed mechanistic insight into Fub7 catalysis. Our findings elucidate the structural basis for its substrate specificity, stereoselectivity, and regioselectivity. Our work sets the stage ready for subsequent protein engineering effort aimed at expanding the synthetic utility of Fub7, potentially unlocking novel methods to access a broader array of noncanonical amino acids.

Legend

Protein

Chemical

Disease

Primary Citation of related structures