8B6G image
Entry Detail
PDB ID:
8B6G
EMDB ID:
Title:
Cryo-EM structure of succinate dehydrogenase complex (complex-II) in respiratory supercomplex of Tetrahymena thermophila
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2022-09-27
Release Date:
2023-03-29
Method Details:
Experimental Method:
Resolution:
3.00 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Succinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial
Chain IDs:D (auth: CA)
Chain Length:636
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Succinate dehydrogenase (quinone)
Chain IDs:F (auth: CB)
Chain Length:312
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Cytochrome b-c1 complex subunit 8
Chain IDs:M (auth: CC)
Chain Length:60
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:SDHD
Chain IDs:O (auth: CD)
Chain Length:44
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:NmrA domain-containing protein
Chain IDs:J (auth: CE)
Chain Length:322
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Transmembrane protein, putative
Chain IDs:G (auth: CF)
Chain Length:296
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:SDHTT3
Chain IDs:H (auth: CG)
Chain Length:198
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Diphthamide synthesis protein
Chain IDs:A (auth: CH)
Chain Length:195
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:DUF4885 domain-containing protein
Chain IDs:E (auth: CI)
Chain Length:114
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Transmembrane protein, putative
Chain IDs:K (auth: CJ)
Chain Length:103
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Transmembrane protein, putative
Chain IDs:I (auth: CK)
Chain Length:93
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Transposase
Chain IDs:C (auth: CL)
Chain Length:89
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Transmembrane protein, putative
Chain IDs:B (auth: CM)
Chain Length:76
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:Transmembrane protein, putative
Chain IDs:L (auth: CN)
Chain Length:62
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Polymer Type:polypeptide(L)
Description:SDHTT11
Chain IDs:N (auth: CO)
Chain Length:43
Number of Molecules:1
Biological Source:Tetrahymena thermophila
Primary Citation
Structural basis of mitochondrial membrane bending by the I-II-III 2 -IV 2 supercomplex.
Nature 615 934 938 (2023)
PMID: 36949187 DOI: 10.1038/s41586-023-05817-y

Abstact

Mitochondrial energy conversion requires an intricate architecture of the inner mitochondrial membrane1. Here we show that a supercomplex containing all four respiratory chain components contributes to membrane curvature induction in ciliates. We report cryo-electron microscopy and cryo-tomography structures of the supercomplex that comprises 150 different proteins and 311 bound lipids, forming a stable 5.8-MDa assembly. Owing to subunit acquisition and extension, complex I associates with a complex IV dimer, generating a wedge-shaped gap that serves as a binding site for complex II. Together with a tilted complex III dimer association, it results in a curved membrane region. Using molecular dynamics simulations, we demonstrate that the divergent supercomplex actively contributes to the membrane curvature induction and tubulation of cristae. Our findings highlight how the evolution of protein subunits of respiratory complexes has led to the I-II-III2-IV2 supercomplex that contributes to the shaping of the bioenergetic membrane, thereby enabling its functional specialization.

Legend

Protein

Chemical

Disease

Primary Citation of related structures