8A9Q image
Deposition Date 2022-06-29
Release Date 2023-05-10
Last Version Date 2024-11-20
Entry Detail
PDB ID:
8A9Q
Title:
Computational design of stable mammalian serum albumins for bacterial expression
Biological Source:
Source Organism:
Escherichia coli (Taxon ID: 562)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.27
R-Value Work:
0.22
R-Value Observed:
0.22
Space Group:
P 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Albumin
Gene (Uniprot):ALB
Chain IDs:A, B
Chain Length:585
Number of Molecules:2
Biological Source:Escherichia coli
Primary Citation
Stable Mammalian Serum Albumins Designed for Bacterial Expression.
J.Mol.Biol. 435 168191 168191 (2023)
PMID: 37385581 DOI: 10.1016/j.jmb.2023.168191

Abstact

Albumin is the most abundant protein in the blood serum of mammals and has essential carrier and physiological roles. Albumins are also used in a wide variety of molecular and cellular experiments and in the cultivated meat industry. Despite their importance, however, albumins are challenging for heterologous expression in microbial hosts, likely due to 17 conserved intramolecular disulfide bonds. Therefore, albumins used in research and biotechnological applications either derive from animal serum, despite severe ethical and reproducibility concerns, or from recombinant expression in yeast or rice. We use the PROSS algorithm to stabilize human and bovine serum albumins, finding that all are highly expressed in E. coli. Design accuracy is verified by crystallographic analysis of a human albumin variant with 16 mutations. This albumin variant exhibits ligand binding properties similar to those of the wild type. Remarkably, a design with 73 mutations relative to human albumin exhibits over 40 °C improved stability and is stable beyond the boiling point of water. Our results suggest that proteins with many disulfide bridges have the potential to exhibit extreme stability when subjected to design. The designed albumins may be used to make economical, reproducible, and animal-free reagents for molecular and cell biology. They also open the way to high-throughput screening to study and enhance albumin carrier properties.

Legend

Protein

Chemical

Disease

Primary Citation of related structures