8A4E image
Entry Detail
PDB ID:
8A4E
Keywords:
Title:
Room temperature structure of AtPhot2LOV2 in a photostationary equilibrium
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2022-06-10
Release Date:
2023-03-29
Method Details:
Experimental Method:
Resolution:
1.96 Å
R-Value Free:
0.22
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
P 43 21 2
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Phototropin-2
Chain IDs:A
Chain Length:128
Number of Molecules:1
Biological Source:Arabidopsis thaliana
Primary Citation
Slow protein dynamics probed by time-resolved oscillation crystallography at room temperature.
Iucrj 9 756 767 (2022)
PMID: 36381146 DOI: 10.1107/S2052252522009150

Abstact

The development of serial crystallography over the last decade at XFELs and synchrotrons has produced a renaissance in room-temperature macromolecular crystallography (RT-MX), and fostered many technical and methodological breakthroughs designed to study phenomena occurring in proteins on the picosecond-to-second timescale. However, there are components of protein dynamics that occur in much slower regimes, of which the study could readily benefit from state-of-the-art RT-MX. Here, the room-temperature structural study of the relaxation of a reaction intermediate at a synchrotron, exploiting a handful of single crystals, is described. The intermediate in question is formed in microseconds during the photoreaction of the LOV2 domain of phototropin 2 from Arabidopsis thaliana, which then decays in minutes. This work monitored its relaxation in the dark using a fast-readout EIGER X 4M detector to record several complete oscillation X-ray diffraction datasets, each of 1.2 s total exposure time, at different time points in the relaxation process. Coupled with in crystallo UV-Vis absorption spectroscopy, this RT-MX approach allowed the authors to follow the relaxation of the photoadduct, a thio-ether covalent bond between the chromophore and a cysteine residue. Unexpectedly, the return of the chromophore to its spectroscopic ground state is followed by medium-scale protein rearrangements that trigger a crystal phase transition and hinder the full recovery of the structural ground state of the protein. In addition to suggesting a hitherto unexpected role of a conserved tryptophan residue in the regulation of the photocycle of LOV2, this work provides a basis for performing routine time-resolved protein crystallography experiments at synchrotrons for phenomena occurring on the second-to-hour timescale.

Legend

Protein

Chemical

Disease

Primary Citation of related structures