7ZQE image
Entry Detail
PDB ID:
7ZQE
EMDB ID:
Keywords:
Title:
Plastocyanin bound to PSI of Chlamydomonas reinhardtii
Biological Source:
Source Organism:
PDB Version:
Deposition Date:
2022-04-29
Release Date:
2022-11-23
Method Details:
Experimental Method:
Resolution:
2.55 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Plastocyanin, chloroplastic
Chain IDs:A (auth: M)
Chain Length:145
Number of Molecules:1
Biological Source:Chlamydomonas reinhardtii
Ligand Molecules
Primary Citation
Algal photosystem I dimer and high-resolution model of PSI-plastocyanin complex.
Nat.Plants 8 1191 1201 (2022)
PMID: 36229605 DOI: 10.1038/s41477-022-01253-4

Abstact

Photosystem I (PSI) enables photo-electron transfer and regulates photosynthesis in the bioenergetic membranes of cyanobacteria and chloroplasts. Being a multi-subunit complex, its macromolecular organization affects the dynamics of photosynthetic membranes. Here we reveal a chloroplast PSI from the green alga Chlamydomonas reinhardtii that is organized as a homodimer, comprising 40 protein subunits with 118 transmembrane helices that provide scaffold for 568 pigments. Cryogenic electron microscopy identified that the absence of PsaH and Lhca2 gives rise to a head-to-head relative orientation of the PSI-light-harvesting complex I monomers in a way that is essentially different from the oligomer formation in cyanobacteria. The light-harvesting protein Lhca9 is the key element for mediating this dimerization. The interface between the monomers is lacking PsaH and thus partially overlaps with the surface area that would bind one of the light-harvesting complex II complexes in state transitions. We also define the most accurate available PSI-light-harvesting complex I model at 2.3 Å resolution, including a flexibly bound electron donor plastocyanin, and assign correct identities and orientations to all the pigments, as well as 621 water molecules that affect energy transfer pathways.

Legend

Protein

Chemical

Disease

Primary Citation of related structures