7Y2D image
Deposition Date 2022-06-09
Release Date 2023-07-05
Last Version Date 2025-08-20
Entry Detail
PDB ID:
7Y2D
Title:
HSA-Cu agent complex
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.00 Å
R-Value Free:
0.28
R-Value Work:
0.23
R-Value Observed:
0.23
Space Group:
C 1 2 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Serum albumin
Gene (Uniprot):ALB
Chain IDs:A
Chain Length:581
Number of Molecules:1
Biological Source:Homo sapiens
Primary Citation
Developing a Copper(II) Agent Based on His-146 and His-242 Residues of Human Serum Albumin Nanoparticles: Integration To Overcome Cisplatin Resistance and Inhibit the Metastasis of Nonsmall Cell Lung Cancer.
J.Med.Chem. 65 9447 9458 (2022)
PMID: 35786921 DOI: 10.1021/acs.jmedchem.2c00698

Abstact

To overcome the resistance of nonsmall cell lung cancer (NSCLC) cells to cisplatin and inhibit their metastasis, we proposed to develop a Cu(II) agent based on the specific residue(s) of HSA nanoparticles (NPs) for multitargeting the tumor microenvironment (TME). To this end, we not only synthesized four Cu(II) 2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone compounds (C1-C4), obtaining a Cu compound (C4) with significant cytotoxicity by studying their structure-activity relationships, but also revealed the binding mechanism of C4 to HSA through X-ray crystallography and confirmed the successful construction of a new HSA-C4 NPs delivery system. C4 and HSA-C4 NPs inhibited the A549cisR tumor growth and metastasis, and HSA NPs optimized the anticancer behavior of C4. We further confirmed the anticancer mechanism of the C4/HSA-C4 NP multitargeting TME to overcome cisplatin resistance: killing tumor cells by acting on the mtDNA and inducing apoptosis, polarizing M2-type macrophages to the M1-type, and inhibiting angiogenesis.

Legend

Protein

Chemical

Disease

Primary Citation of related structures