7XPX image
Deposition Date 2022-05-06
Release Date 2022-06-01
Last Version Date 2022-06-01
Entry Detail
PDB ID:
7XPX
Title:
Cryo-EM structure of the histone methyltransferase SET8 bound to H4K20Ecx-nucleosome
Biological Source:
Source Organism:
Xenopus laevis (Taxon ID: 8355)
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
3.20 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Histone H3
Chain IDs:A, E
Chain Length:135
Number of Molecules:2
Biological Source:Xenopus laevis
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Histone H4
Chain IDs:B, F
Chain Length:102
Number of Molecules:2
Biological Source:Xenopus laevis
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Histone H2A
Chain IDs:C, G
Chain Length:129
Number of Molecules:2
Biological Source:Xenopus laevis
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Histone H2B 1.1
Chain IDs:D, H
Chain Length:122
Number of Molecules:2
Biological Source:Xenopus laevis
Polymer Type:polydeoxyribonucleotide
Molecule:DNA (145-MER)
Chain IDs:I
Chain Length:145
Number of Molecules:1
Biological Source:Homo sapiens
Polymer Type:polydeoxyribonucleotide
Molecule:DNA (145-MER)
Chain IDs:J
Chain Length:145
Number of Molecules:1
Biological Source:Homo sapiens
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:N-lysine methyltransferase KMT5A
Gene (Uniprot):KMT5A
Chain IDs:K
Chain Length:221
Number of Molecules:1
Biological Source:Homo sapiens
Ligand Molecules
Primary Citation
Structural basis of nucleosomal H4K20 methylation by methyltransferase SET8.
Faseb J. 36 e22338 e22338 (2022)
PMID: 35532550 DOI: 10.1096/fj.202101821R

Abstact

Histone H4 lysine 20 monomethylation (H4K20me1) plays a crucial role in multiple processes including DNA damage repair, DNA replication, and cell cycle control. Histone methyltransferase SET8 (previously named PR-Set7/KMT5A) mediates the chromatin deposition of H4K20me1, but how SET8 recognizes and modifies H4 in the context of the nucleosome is not fully understood. Here, we developed a simple chemical modification approach for H4K20 substitution by using the lysine analog S-ethyl-L-cysteine (Ecx). Substitution of H4K20 with H4Ecx20 improves the stability of the SET8-nucleosome complex, allowing us to determine the cryo-EM structure at 3.2 Å resolution. Structural analyses show that SET8 directly interacts with the H4 tail and the H2A-H2B acidic patch to ensure nucleosome binding. SET8 residues R339, K341, K351 make contact with nucleosomal DNA at the super helical location 2 (SHL2). Substitution of SET8 DNA-binding residues with alanines decreases the SET8-nucleosome interaction and impairs the methyltransferase activity. Disrupting the binding between SET8 R192 and H2A-H2B acidic patch decreases the cellular level of H4K20me1. Together, these results reveal a near-atomic resolution structure of SET8-bound nucleosome and provide insights into the SET8-mediated H4K20 recognition and modification. The lysine-to-Ecx substitution approach can be applied to the study of other methyltransferases.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback