7WH9 image
Entry Detail
PDB ID:
7WH9
Keywords:
Title:
holo structure of emodin 1-OH O-methyltransferase complex with emodin and S-Adenosyl-L-homocysteine
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2021-12-30
Release Date:
2023-01-11
Method Details:
Experimental Method:
Resolution:
2.80 Å
R-Value Free:
0.21
R-Value Work:
0.17
R-Value Observed:
0.17
Space Group:
P 31 2 1
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:O-methyltransferase gedA
Chain IDs:A, B, C
Chain Length:506
Number of Molecules:3
Biological Source:Aspergillus terreus
Primary Citation
Characterization and Structural Analysis of Emodin- O -Methyltransferase from Aspergillus terreus.
J.Agric.Food Chem. 70 5728 5737 (2022)
PMID: 35475366 DOI: 10.1021/acs.jafc.2c01281

Abstact

All O-methylated derivatives of emodin, including physcion, questin, and 1-O-methylemodin, show potential antifungal activities. Notably, emodin and questin are two pivotal intermediates of geodin biosynthesis in Aspergillus terreus. Although most of the geodin biosynthetic steps have been investigated, the key O-methyltransferase (OMT) responsible for the O-methylation of emodin to generate questin has remained unidentified. Herein, through phylogenetic tree analysis and in vitro biochemical assays, the long-sought class II emodin-O-methyltransferase GedA has been functionally characterized. Additionally, the catalytic mechanism and key residues at the catalytic site of GedA were elucidated by enzyme-substrate-methyl donor analogue ternary complex crystal structure determination and site-directed mutagenesis. As we demonstrate, GedA adopts a typical general acid/base (E446/H373)-mediated transmethylation mechanism. In particular, residue D374 is also crucial for efficient catalysis through blocking the formation of intramolecular hydrogen bonds in emodin. This study will facilitate future engineering of GedA for the production of physcion or other site-specific O-methylated anthraquinone derivatives with potential applications as biopesticides.

Legend

Protein

Chemical

Disease

Primary Citation of related structures