7W80 image
Deposition Date 2021-12-07
Release Date 2022-09-21
Last Version Date 2023-11-29
Entry Detail
PDB ID:
7W80
Keywords:
Title:
Crystal Structure of the Heterodimeric HIF-2 in Complex with Antagonist Belzutifan
Biological Source:
Source Organism:
Mus musculus (Taxon ID: 10090)
Method Details:
Experimental Method:
Resolution:
2.75 Å
R-Value Free:
0.27
R-Value Work:
0.21
R-Value Observed:
0.22
Space Group:
P 1 21 1
Macromolecular Entities
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Aryl hydrocarbon receptor nuclear translocator
Gene (Uniprot):Arnt
Chain IDs:A
Chain Length:384
Number of Molecules:1
Biological Source:Mus musculus
Structures with similar UniProt ID
Protein Blast
Polymer Type:polypeptide(L)
Molecule:Endothelial PAS domain-containing protein 1
Gene (Uniprot):Epas1
Chain IDs:B
Chain Length:360
Number of Molecules:1
Biological Source:Mus musculus
Ligand Molecules
Primary Citation
Structural basis for the allosteric inhibition of hypoxia-inducible factor (HIF)-2 by belzutifan.
Mol.Pharmacol. ? ? ? (2022)
PMID: 36167425 DOI: 10.1124/molpharm.122.000525

Abstact

Hypoxia-inducible factor (HIF)-2α and its obligate heterodimerization partner aryl hydrocarbon receptor nuclear translocator (ARNT), are both members of the basic helix-loop-helix-PER-ARNT-SIM (bHLH-PAS) transcription factor family. Previous studies have identified HIF-2α as a key oncogenic driver in clear cell renal cell carcinoma (ccRCC), rendering it a promising drug target for this type of kidney cancer. Belzutifan is the first HIF-2α inhibitor approved for treating ccRCC and other cancers associated with the von Hippel-Lindau (VHL) disease. However, the detailed inhibitory mechanism of belzutifan at molecular level is still unclear. Here we obtained the crystal structure of HIF-2α-ARNT heterodimer in complex with belzutifan at 2.75 Å resolution. The complex structure shows that belzutifan binds into the PAS-B pocket of HIF-2α, and it destabilizes the dimerization of HIF-2α and ARNT through allosteric effects mainly mediated by the key residue M252 of HIF-2α near the dimer interface. We further explored the inhibitory effects of belzutifan using biochemical and functional assays. The time-resolved fluorescence energy transfer (TR-FRET)-based binding assay showed that belzutifan disrupts the dimerization of HIF-2α and ARNT with a Ki value of 20 nM. The luciferase reporter assay indicated that belzutifan can efficiently inhibit the transcriptional activity of HIF-2α with an IC50 value of 17 nM. Besides, the real-time PCR assay illustrated that belzutifan can reduce the expression of HIF-2α downstream genes in 786-O kidney cancer cells in a dose-dependent manner. Our work reveals the molecular mechanism by which belzutifan allosterically inhibits HIF-2α and provides valuable information for the subsequent drug development targeting HIF-2α. Significance Statement The bHLH-PAS family of transcription factors are an emerging group of small-molecule drug targets. Belzutifan, originally developed by Peloton Therapeutics, is the first FDA-approved drug directly binding to a bHLH-PAS protein, the hypoxia-inducible factor (HIF)-2α. Based on the protein-drug complex structure, biochemical binding assays, and functional profiling of downstream gene expression, this study reveals the regulatory mechanism of how belzutifan allosterically destabilizes HIF-2α's heterodimerization with its obligate partner protein, thus reducing their transcriptional activity that links to tumor progression.

Legend

Protein

Chemical

Disease

Primary Citation of related structures
Feedback Form
Name
Email
Institute
Feedback