7UMH image
Deposition Date 2022-04-07
Release Date 2023-05-17
Last Version Date 2024-11-13
Entry Detail
PDB ID:
7UMH
Keywords:
Title:
Energetic robustness to large scale structural dynamics in a photosynthetic supercomplex
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
2.60 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Photosystem I P700 chlorophyll a apoprotein A1
Gene (Uniprot):psaA
Chain IDs:A, H, AA (auth: a)
Chain Length:751
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I P700 chlorophyll a apoprotein A2
Gene (Uniprot):psaB
Chain IDs:B, G, BA (auth: b)
Chain Length:731
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I iron-sulfur center
Gene (Uniprot):psaC
Chain IDs:C, N, CA (auth: c)
Chain Length:81
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit II
Gene (Uniprot):psaD
Chain IDs:D, P, DA (auth: d)
Chain Length:141
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit IV
Gene (Uniprot):psaE
Chain IDs:E, O, EA (auth: e)
Chain Length:74
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit III
Gene (Uniprot):psaF
Chain IDs:F, Q, FA (auth: f)
Chain Length:165
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit VIII
Gene (Uniprot):psaI
Chain IDs:I, R, IA (auth: i)
Chain Length:40
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit IX
Gene (Uniprot):psaJ
Chain IDs:J, S, JA (auth: j)
Chain Length:40
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit PsaK 1
Gene (Uniprot):psaK1
Chain IDs:K, T, KA (auth: k)
Chain Length:86
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit XI
Gene (Uniprot):psaL
Chain IDs:L, U, LA (auth: l)
Chain Length:157
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Photosystem I reaction center subunit XII
Gene (Uniprot):psaM
Chain IDs:M, V, MA (auth: m)
Chain Length:31
Number of Molecules:3
Biological Source:Synechocystis sp. PCC 6803
Polymer Type:polypeptide(L)
Molecule:Iron stress-induced chlorophyll-binding protein
Gene (Uniprot):isiA
Chain IDs:W, X, Y, Z, GA (auth: g), HA (auth: h), NA (auth: n), OA (auth: o), PA (auth: p), QA (auth: q), RA (auth: r), SA (auth: s), TA (auth: t), UA (auth: u), VA (auth: v), WA (auth: w), XA (auth: x), YA (auth: y)
Chain Length:342
Number of Molecules:18
Biological Source:Synechocystis sp. PCC 6803
Primary Citation
Energetic robustness to large scale structural fluctuations in a photosynthetic supercomplex.
Nat Commun 14 4650 4650 (2023)
PMID: 37532717 DOI: 10.1038/s41467-023-40146-8

Abstact

Photosynthetic organisms transport and convert solar energy with near-unity quantum efficiency using large protein supercomplexes held in flexible membranes. The individual proteins position chlorophylls to tight tolerances considered critical for fast and efficient energy transfer. The variability in protein organization within the supercomplexes, and how efficiency is maintained despite variability, had been unresolved. Here, we report on structural heterogeneity in the 2-MDa cyanobacterial PSI-IsiA photosynthetic supercomplex observed using Cryo-EM, revealing large-scale variances in the positions of IsiA relative to PSI. Single-molecule measurements found efficient IsiA-to-PSI energy transfer across all conformations, along with signatures of transiently decoupled IsiA. Structure based calculations showed that rapid IsiA-to-PSI energy transfer is always maintained, and even increases by three-fold in rare conformations via IsiA-specific chls. We postulate that antennae design mitigates structural fluctuations, providing a mechanism for robust energy transfer in the flexible membrane.

Legend

Protein

Chemical

Disease

Primary Citation of related structures