7TAE image
Entry Detail
PDB ID:
7TAE
Title:
Crystal Structure of the NPR1-Interacting Domain of TGA3
Biological Source:
Source Organism:
Host Organism:
PDB Version:
Deposition Date:
2021-12-20
Release Date:
2022-03-16
Method Details:
Experimental Method:
Resolution:
1.50 Å
R-Value Free:
0.21
R-Value Work:
0.18
R-Value Observed:
0.18
Space Group:
C 2 2 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Transcription factor TGA3
Chain IDs:A
Chain Length:250
Number of Molecules:1
Biological Source:Arabidopsis thaliana
Primary Citation
Structural basis of NPR1 in activating plant immunity.
Nature 605 561 566 (2022)
PMID: 35545668 DOI: 10.1038/s41586-022-04699-w

Abstact

NPR1 is a master regulator of the defence transcriptome induced by the plant immune signal salicylic acid1-4. Despite the important role of NPR1 in plant immunity5-7, understanding of its regulatory mechanisms has been hindered by a lack of structural information. Here we report cryo-electron microscopy and crystal structures of Arabidopsis NPR1 and its complex with the transcription factor TGA3. Cryo-electron microscopy analysis reveals that NPR1 is a bird-shaped homodimer comprising a central Broad-complex, Tramtrack and Bric-à-brac (BTB) domain, a BTB and carboxyterminal Kelch helix bundle, four ankyrin repeats and a disordered salicylic-acid-binding domain. Crystal structure analysis reveals a unique zinc-finger motif in BTB for interacting with ankyrin repeats and mediating NPR1 oligomerization. We found that, after stimulation, salicylic-acid-induced folding and docking of the salicylic-acid-binding domain onto ankyrin repeats is required for the transcriptional cofactor activity of NPR1, providing a structural explanation for a direct role of salicylic acid in regulating NPR1-dependent gene expression. Moreover, our structure of the TGA32-NPR12-TGA32 complex, DNA-binding assay and genetic data show that dimeric NPR1 activates transcription by bridging two fatty-acid-bound TGA3 dimers to form an enhanceosome. The stepwise assembly of the NPR1-TGA complex suggests possible hetero-oligomeric complex formation with other transcription factors, revealing how NPR1 reprograms the defence transcriptome.

Legend

Protein

Chemical

Disease

Primary Citation of related structures