7R7C image
Deposition Date 2021-06-24
Release Date 2022-11-09
Last Version Date 2024-06-05
Entry Detail
PDB ID:
7R7C
Keywords:
Title:
State E2 nucleolar 60S ribosomal biogenesis intermediate - L1 stalk local model
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Resolution:
3.71 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polyribonucleotide
Molecule:25S rRNA
Chain IDs:A (auth: 1)
Chain Length:226
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:60S ribosomal subunit assembly/export protein LOC1
Gene (Uniprot):LOC1
Chain IDs:G (auth: 7)
Chain Length:204
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:Ribosome biogenesis protein BRX1
Gene (Uniprot):BRX1
Chain IDs:H (auth: A)
Chain Length:217
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:rRNA-processing protein EBP2
Chain IDs:I (auth: J)
Chain Length:96
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:60S ribosomal protein L1-A
Chain IDs:K (auth: a)
Chain Length:217
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:Nucleolar GTP-binding protein 1
Chain IDs:J (auth: b)
Chain Length:54
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:60S ribosome subunit biogenesis protein NIP7
Gene (Uniprot):NIP7
Chain IDs:B (auth: l)
Chain Length:181
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:Ribosome biogenesis protein ERB1
Chain IDs:C (auth: m)
Chain Length:63
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:25S rRNA (cytosine(2870)-C(5))-methyltransferase
Gene (Uniprot):NOP2
Chain IDs:D (auth: q)
Chain Length:618
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:Ribosome biogenesis protein NSA2 homolog
Chain IDs:E (auth: r)
Chain Length:104
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Polymer Type:polypeptide(L)
Molecule:27S pre-rRNA (guanosine(2922)-2'-O)-methyltransferase
Gene (Uniprot):SPB1
Chain IDs:F (auth: w)
Chain Length:12
Number of Molecules:1
Biological Source:Saccharomyces cerevisiae BY4741
Ligand Molecules
Primary Citation
Sequence-specific remodeling of a topologically complex RNP substrate by Spb4.
Nat.Struct.Mol.Biol. 29 1228 1238 (2022)
PMID: 36482249 DOI: 10.1038/s41594-022-00874-9

Abstact

DEAD-box ATPases are ubiquitous enzymes essential in all aspects of RNA biology. However, the limited in vitro catalytic activities described for these enzymes are at odds with their complex cellular roles, most notably in driving large-scale RNA remodeling steps during the assembly of ribonucleoproteins (RNPs). We describe cryo-EM structures of 60S ribosomal biogenesis intermediates that reveal how context-specific RNA unwinding by the DEAD-box ATPase Spb4 results in extensive, sequence-specific remodeling of rRNA secondary structure. Multiple cis and trans interactions stabilize Spb4 in a post-catalytic, high-energy intermediate that drives the organization of the three-way junction at the base of rRNA domain IV. This mechanism explains how limited strand separation by DEAD-box ATPases is leveraged to provide non-equilibrium directionality and ensure efficient and accurate RNP assembly.

Legend

Protein

Chemical

Disease

Primary Citation of related structures