7QGV image
Deposition Date 2021-12-10
Release Date 2022-08-03
Last Version Date 2023-11-15
Entry Detail
PDB ID:
7QGV
Keywords:
Title:
Solid-state NMR structure of Teixobactin-Lipid II.
Biological Source:
Source Organism:
Method Details:
Experimental Method:
Conformers Calculated:
25
Conformers Submitted:
25
Selection Criteria:
all calculated structures submitted
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Teixobactin
Chain IDs:A, B, C, D
Chain Length:11
Number of Molecules:4
Biological Source:Eleftheria terrae
Polymer Type:polypeptide(D)
Molecule:Lipid II
Chain IDs:E, F, G, H
Chain Length:5
Number of Molecules:4
Biological Source: Staphylococcus aureus
Peptide-like Molecules
PRD_002268
PRD_002384
Primary Citation

Abstact

Antibiotics that use novel mechanisms are needed to combat antimicrobial resistance1-3. Teixobactin4 represents a new class of antibiotics with a unique chemical scaffold and lack of detectable resistance. Teixobactin targets lipid II, a precursor of peptidoglycan5. Here we unravel the mechanism of teixobactin at the atomic level using a combination of solid-state NMR, microscopy, in vivo assays and molecular dynamics simulations. The unique enduracididine C-terminal headgroup of teixobactin specifically binds to the pyrophosphate-sugar moiety of lipid II, whereas the N terminus coordinates the pyrophosphate of another lipid II molecule. This configuration favours the formation of a β-sheet of teixobactins bound to the target, creating a supramolecular fibrillar structure. Specific binding to the conserved pyrophosphate-sugar moiety accounts for the lack of resistance to teixobactin4. The supramolecular structure compromises membrane integrity. Atomic force microscopy and molecular dynamics simulations show that the supramolecular structure displaces phospholipids, thinning the membrane. The long hydrophobic tails of lipid II concentrated within the supramolecular structure apparently contribute to membrane disruption. Teixobactin hijacks lipid II to help destroy the membrane. Known membrane-acting antibiotics also damage human cells, producing undesirable side effects. Teixobactin damages only membranes that contain lipid II, which is absent in eukaryotes, elegantly resolving the toxicity problem. The two-pronged action against cell wall synthesis and cytoplasmic membrane produces a highly effective compound targeting the bacterial cell envelope. Structural knowledge of the mechanism of teixobactin will enable the rational design of improved drug candidates.

Legend

Protein

Chemical

Disease

Primary Citation of related structures