7PWM image
Deposition Date 2021-10-07
Release Date 2022-05-11
Last Version Date 2024-01-31
Entry Detail
PDB ID:
7PWM
Keywords:
Title:
PARP15 catalytic domain in complex with OUL252
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
1.35 Å
R-Value Free:
0.16
R-Value Work:
0.13
R-Value Observed:
0.13
Space Group:
P 21 21 21
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:Protein mono-ADP-ribosyltransferase PARP15
Gene (Uniprot):PARP15
Chain IDs:A, B
Chain Length:221
Number of Molecules:2
Biological Source:Homo sapiens
Primary Citation
Potent 2,3-dihydrophthalazine-1,4-dione derivatives as dual inhibitors for mono-ADP-ribosyltransferases PARP10 and PARP15.
Eur.J.Med.Chem. 237 114362 114362 (2022)
PMID: 35500474 DOI: 10.1016/j.ejmech.2022.114362

Abstact

While human poly-ADP-ribose chain generating poly-ARTs, PARP1 and 2 and TNKS1 and 2, have been widely characterized, less is known on the pathophysiological roles of the mono-ADP-ribosylating mono-ARTs, partly due to the lack of selective inhibitors. In this context, we have focused on the development of inhibitors for the mono-ART PARP10, whose overexpression is known to induce cell death. Starting from OUL35 (1) and its 4-(benzyloxy)benzamidic derivative (2) we herein report the design and synthesis of new analogues from which the cyclobutyl derivative 3c rescued cells most efficiently from PARP10 induced apoptosis. Most importantly, we also identified 2,3-dihydrophthalazine-1,4-dione as a new suitable nicotinamide mimicking PARP10 inhibitor scaffold. When it was functionalized with cycloalkyl (8a-c), o-fluorophenyl (8h), and thiophene (8l) rings, IC50 values in the 130-160 nM range were obtained, making them the most potent PARP10 inhibitors reported to date. These compounds also inhibited PARP15 with low micromolar IC50s, but none of the other tested poly- and mono-ARTs, thus emerging as dual mono-ART inhibitors. Compounds 8a, 8h and 8l were also able to enter cells and rescue cells from apoptosis. Our work sheds more light on inhibitor development against mono-ARTs and identifies chemical probes to study the cellular roles of PARP10 and PARP15.

Legend

Protein

Chemical

Disease

Primary Citation of related structures