7PQ5 image
Entry Detail
PDB ID:
7PQ5
EMDB ID:
Keywords:
Title:
Photorhabdus laumondii T6SS-associated Rhs protein carrying the Tre23 toxin domain
Biological Source:
PDB Version:
Deposition Date:
2021-09-16
Release Date:
2021-12-01
Method Details:
Experimental Method:
Resolution:
3.17 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:Tre23
Mutations:D1338N
Chain IDs:A (auth: L)
Chain Length:1481
Number of Molecules:1
Biological Source:Photorhabdus laumondii subsp. laumondii TTO1
Ligand Molecules
Primary Citation
Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin.
Nat Commun 12 6998 6998 (2021)
PMID: 34853317 DOI: 10.1038/s41467-021-27388-0

Abstact

Bacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal β-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a β-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.

Legend

Protein

Chemical

Disease

Primary Citation of related structures