7P3N image
Entry Detail
PDB ID:
7P3N
EMDB ID:
Title:
F1Fo-ATP synthase from Acinetobacter baumannii (state 2)
Biological Source:
PDB Version:
Deposition Date:
2021-07-08
Release Date:
2022-02-02
Method Details:
Experimental Method:
Resolution:
4.60 Å
Aggregation State:
PARTICLE
Reconstruction Method:
SINGLE PARTICLE
Macromolecular Entities
Polymer Type:polypeptide(L)
Description:ATP synthase subunit alpha
Chain IDs:A, B, C
Chain Length:291
Number of Molecules:3
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase subunit beta
Chain IDs:D, E, F
Chain Length:178
Number of Molecules:3
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase subunit c
Chain IDs:G, H, I (auth: J), J (auth: K), K (auth: L), L (auth: O), M (auth: P), N (auth: Q), O (auth: R), P (auth: S)
Chain Length:81
Number of Molecules:10
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase subunit a
Chain IDs:Q (auth: a)
Chain Length:291
Number of Molecules:1
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase subunit b
Chain IDs:R (auth: b), V (auth: p)
Chain Length:156
Number of Molecules:2
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase subunit delta
Chain IDs:S (auth: d)
Chain Length:178
Number of Molecules:1
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase epsilon chain
Chain IDs:T (auth: e)
Chain Length:139
Number of Molecules:1
Biological Source:Acinetobacter baumannii ATCC 17978
Polymer Type:polypeptide(L)
Description:ATP synthase gamma chain
Chain IDs:U (auth: g)
Chain Length:81
Number of Molecules:1
Biological Source:Acinetobacter baumannii ATCC 17978
Primary Citation
Structure of ATP synthase from ESKAPE pathogen Acinetobacter baumannii.
Sci Adv 8 eabl5966 eabl5966 (2022)
PMID: 35171679 DOI: 10.1126/sciadv.abl5966

Abstact

The global spread of multidrug-resistant Acinetobacter baumannii infections urgently calls for the identification of novel drug targets. We solved the electron cryo-microscopy structure of the F1Fo-adenosine 5'-triphosphate (ATP) synthase from A. baumannii in three distinct conformational states. The nucleotide-converting F1 subcomplex reveals a specific self-inhibition mechanism, which supports a unidirectional ratchet mechanism to avoid wasteful ATP consumption. In the membrane-embedded Fo complex, the structure shows unique structural adaptations along both the entry and exit pathways of the proton-conducting a-subunit. These features, absent in mitochondrial ATP synthases, represent attractive targets for the development of next-generation therapeutics that can act directly at the culmination of bioenergetics in this clinically relevant pathogen.

Legend

Protein

Chemical

Disease

Primary Citation of related structures