7NS7 image
Deposition Date 2021-03-05
Release Date 2022-03-23
Last Version Date 2024-01-31
Entry Detail
PDB ID:
7NS7
Keywords:
Title:
Human L-alanine:glyoxylate aminotransferase minor allele variant: AGXT-Mi (P11L-I340M)
Biological Source:
Source Organism:
Homo sapiens (Taxon ID: 9606)
Host Organism:
Method Details:
Experimental Method:
Resolution:
2.20 Å
R-Value Free:
0.28
R-Value Work:
0.24
R-Value Observed:
0.24
Space Group:
P 41
Macromolecular Entities
Polymer Type:polypeptide(L)
Molecule:L-alanine:glyoxylate aminotransferase
Gene (Uniprot):AGXT
Chain IDs:A, B
Chain Length:392
Number of Molecules:2
Biological Source:Homo sapiens
Modified Residue
Compound ID Chain ID Parent Comp ID Details 2D Image
LLP A LYS modified residue
Primary Citation
Structural dynamics shape the fitness window of alanine:glyoxylate aminotransferase.
Protein Sci. 31 e4303 e4303 (2022)
PMID: 35481644 DOI: 10.1002/pro.4303

Abstact

The conformational landscape of a protein is constantly expanded by genetic variations that have a minimal impact on the function(s) while causing subtle effects on protein structure. The wider the conformational space sampled by these variants, the higher the probabilities to adapt to changes in environmental conditions. However, the probability that a single mutation may result in a pathogenic phenotype also increases. Here we present a paradigmatic example of how protein evolution balances structural stability and dynamics to maximize protein adaptability and preserve protein fitness. We took advantage of known genetic variations of human alanine:glyoxylate aminotransferase (AGT1), which is present as a common major allelic form (AGT-Ma) and a minor polymorphic form (AGT-Mi) expressed in 20% of Caucasian population. By integrating crystallographic studies and molecular dynamics simulations, we show that AGT-Ma is endowed with structurally unstable (frustrated) regions, which become disordered in AGT-Mi. An in-depth biochemical characterization of variants from an anticonsensus library, encompassing the frustrated regions, correlates this plasticity to a fitness window defined by AGT-Ma and AGT-Mi. Finally, co-immunoprecipitation analysis suggests that structural frustration in AGT1 could favor additional functions related to protein-protein interactions. These results expand our understanding of protein structural evolution by establishing that naturally occurring genetic variations tip the balance between stability and frustration to maximize the ensemble of conformations falling within a well-defined fitness window, thus expanding the adaptability potential of the protein.

Legend

Protein

Chemical

Disease

Primary Citation of related structures